1
|
Freeman FE, Dosta P, Shanley LC, Ramirez Tamez N, Riojas Javelly CJ, Mahon OR, Kelly DJ, Artzi N. Localized Nanoparticle-Mediated Delivery of miR-29b Normalizes the Dysregulation of Bone Homeostasis Caused by Osteosarcoma whilst Simultaneously Inhibiting Tumor Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207877. [PMID: 36994935 DOI: 10.1002/adma.202207877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/06/2023] [Indexed: 06/09/2023]
Abstract
Patients diagnosed with osteosarcoma undergo extensive surgical intervention and chemotherapy resulting in dismal prognosis and compromised quality of life owing to poor bone regeneration, which is further compromised with chemotherapy delivery. This study aims to investigate if localized delivery of miR-29b-which is shown to promote bone formation by inducing osteoblast differentiation and also to suppress prostate and cervical tumor growth-can suppress osteosarcoma tumors whilst simultaneously normalizing the dysregulation of bone homeostasis caused by osteosarcoma. Thus, the therapeutic potential of microRNA (miR)-29b is studied to promote bone remodeling in an orthotopic model of osteosarcoma (rather than in bone defect models using healthy mice), and in the context of chemotherapy, that is clinically relevant. A formulation of miR-29b:nanoparticles are developed that are delivered via a hyaluronic-based hydrogel to enable local and sustained release of the therapy and to study the potential of attenuating tumor growth whilst normalizing bone homeostasis. It is found that when miR-29b is delivered along with systemic chemotherapy, compared to chemotherapy alone, the therapy provided a significant decrease in tumor burden, an increase in mouse survival, and a significant decrease in osteolysis thereby normalizing the dysregulation of bone lysis activity caused by the tumor.
Collapse
Affiliation(s)
- Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Lianne C Shanley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Natalia Ramirez Tamez
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristobal J Riojas Javelly
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Olwyn R Mahon
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Medicine, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|