1
|
Razi A, Ring D. Is calcification integral to enthesopathy and tendinopathy rather than a separate disease process? J Orthop 2025; 65:46-50. [PMID: 39801899 PMCID: PMC11722166 DOI: 10.1016/j.jor.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background The pathophysiology of enthesopathy and tendinopathy is mucoid degeneration, which includes chondroid metaplasia. The chondroid metaplasia can be associated with calcification. Inflammation is typically absent unless calcification triggers a self-limited immune response representing acute calcific tendinitis. It is therefore important to address the hypothesis that calcific deposits within various entheses and tendons throughout the body are an inconsequential epiphenomenon of enthesopathy and tendinopathy and do not merit a distinct diagnosis or specific treatment. Methods We searched PubMed, Embase, and Web of Science for studies that address the prevalence of calcium in tendons and entheses with or without symptoms of tendinopathy, specifically excluding likely acute calcific tendinitis, and analyzed 35 studies meeting inclusion and exclusion criteria. Response variables included prevalence of calcification in and enthesis or tendon among people with no symptoms, among people seeking care for symptoms, and in the opposite asymptomatic limb, and the association between calcification and rotator cuff degeneration. Results Calcification of tendons and entheses was present on between 2.7 % and 8.6 % of radiographs of the shoulder, elbow, and ankle among people without symptoms and not seeking care, with higher percentages in older populations. Calcification was common among patients with symptoms: 44 % for rotator cuff tendinopathy, 25 % for enthesopathy of the origin of the extensor carpi radialis brevis, and 53 % for medial elbow enthesopathy. Most people with calcification had it bilaterally. Among people with calcification of the rotator cuff on MRI, nearly all of them (96 %) had tendon degeneration. Conclusions The collective evidence regarding calcification in tendons and entheses suggests that it is related to mucoid degeneration and is not a separate disease process. Acute calcific tendinitis rapidly runs its course and is treated only to alleviate symptoms. It's not clear that acute calcific tendinitis or rotator cuff tendinopathy with calcification benefit from specific treatment of the calcium deposits. Level of evidence Not applicable.
Collapse
Affiliation(s)
- Amin Razi
- Department of Surgery and Perioperative Care, Dell Medical School-The University of Texas at Austin, Austin, TX, USA
- Investigation Performed at the Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - David Ring
- Department of Surgery and Perioperative Care, Dell Medical School-The University of Texas at Austin, Austin, TX, USA
- Investigation Performed at the Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Stücker S, Koßlowksi F, Buchholz A, Schwab A, Halm-Pozniak A, Lohmann CH, Bertrand J. CPP-calcification of articular cartilage is associated with elevated cytokine levels in synovial fluid. Front Cell Dev Biol 2025; 13:1535530. [PMID: 40177128 PMCID: PMC11962012 DOI: 10.3389/fcell.2025.1535530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Calcification of articular tissues is commonly observed in later osteoarthritis (OA) stages and can be caused by basic calcium phosphate (BCP) or calcium pyrophosphate (CPP) crystals. Calcification, particularly CPP deposition, has recently been associated with inflammation and cellular senescence. Investigating this association, we analyzed the concentration of various inflammatory mediators in synovial fluid and synovial membrane of OA patients in relation to calcification and the different crystal types. Methods Synovial fluid was collected from OA patients during joint replacement surgery. Cytokine concentrations were measured using magnetic bead-based multiplex assay using Luminex® technology. Radiographs were used to determine and grade calcification of the knee joint and involved calcium crystal types were identified via Raman spectroscopy. Results Synovial fluid of patients with radiological calcification showed elevated levels of multiple cytokines (IL-10, IL-15, IL-1ra, GM-CSF), chemokines (IL-8, MCP-1, MIP-1b) and growth factors (PDGF-AB/BB, VEGF). Crystal differentiation revealed higher synovial fluid concentrations of IL-15, IL-1ra, IL-10, GM-CSF, PDGF-AB/BB and MIP-1b in patients with CPP- compared to BCP-calcified cartilage. Conclusion We show an elevated cytokine profile in synovial fluid of patients with radiological calcification that may be linked to CPP depositison in cartilage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
3
|
Pascart T, Filippou G, Lioté F, Sirotti S, Jauffret C, Abhishek A. Calcium pyrophosphate deposition disease. THE LANCET. RHEUMATOLOGY 2024; 6:e791-e804. [PMID: 39089298 DOI: 10.1016/s2665-9913(24)00122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Calcium pyrophosphate deposition (CPPD) disease is a consequence of the immune response to the pathological presence of calcium pyrophosphate (CPP) crystals inside joints, which causes acute or chronic inflammatory arthritis. CPPD is strongly associated with cartilage degradation and osteoarthritis, although the direction of causality is unclear. This clinical presentation is called CPPD with osteoarthritis. Although direct evidence is scarce, CPPD disease might be the most common cause of inflammatory arthritis in older people (aged >60 years). CPPD is caused by elevated extracellular-pyrophosphate concentrations in the cartilage and causes inflammation by activation of the NLRP3 inflammasome. Common risk factors for CPPD disease include ageing and previous joint injury. It is uncommonly associated with metabolic conditions (eg, hyperparathyroidism, haemochromatosis, hypomagnesaemia, and hypophosphatasia) and genetic variants (eg, in the ANKH and osteoprotegerin genes). Apart from the detection of CPP crystals in synovial fluid, imaging evidence of CPPD in joints by mainly conventional radiography, and increasingly ultrasonography, has a central role in the diagnosis of CPPD disease. CT is useful in showing calcification in axial joints such as in patients with crowned dens syndrome. To date, no treatment is effective in dissolving CPP crystals, which explains why control of inflammation is currently the main focus of therapeutic strategies. Prednisone might provide the best benefit-risk ratio for the treatment of acute CPP-crystal arthritis, but low-dose colchicine is also effective with a risk of mild diarrhoea. Limited evidence suggests that colchicine, low-dose weekly methotrexate, and hydroxychloroquine might be effective in the prophylaxis of recurrent flares and in the management of persistent CPP-crystal inflammatory arthritis. Additionally, biologics inhibiting IL-1 and IL-6 might have a role in the management of refractory disease.
Collapse
Affiliation(s)
- Tristan Pascart
- Department of Rheumatology, Saint-Philibert Hospital, ETHICS Laboratory, Lille Catholic University, Lille, France.
| | - Georgios Filippou
- Department of Rheumatology, IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Frédéric Lioté
- Feel'Gout, Department of Rheumatology, GH Paris Saint-Joseph, Paris, France; UMR 1132 Bioscar, Inserm, Université Paris Cité, Centre Viggo Petersen, Lariboisière Hospital, Paris, France
| | - Silvia Sirotti
- Department of Rheumatology, IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy
| | - Charlotte Jauffret
- Department of Rheumatology, Saint-Philibert Hospital, ETHICS Laboratory, Lille Catholic University, Lille, France
| | - Abhishek Abhishek
- Academic Rheumatology, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
4
|
Sirotti S, Scanu A, Pascart T, Niessink T, Maroni P, Lombardi G, Filippou G. Calcium Pyrophosphate Crystal Formation and Deposition: Where Do we Stand and What Does the Future hold? Curr Rheumatol Rep 2024; 26:354-365. [PMID: 39088093 PMCID: PMC11377473 DOI: 10.1007/s11926-024-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE OF THE REVIEW Although calcium pyrophosphate deposition (CPPD) has been known since the 1960s, our understanding of its pathogenesis remains rudimentary. This review aims to illustrate the known mechanisms underlying calcium pyrophosphate (CPP) crystal formation and deposition and explore future directions in research. By examining various perspectives, from basic research to clinical and imaging assessments, as well as new emerging methodologies, we can establish a starting point for a deeper understanding of CPPD pathogenesis. RECENT FINDINGS Recent years have seen significant advances in CPPD research, particularly in the clinical field with the development of the 2023 ACR/EULAR classification criteria for CPPD disease, and in imaging with the introduction of the OMERACT ultrasonographic definitions and scoring system. However, progress in basic research has been slower. New laboratory approaches, such as Raman spectroscopy and omics sciences, offer promising insights that may help piece together the puzzle of CPPD. CPPD is a common yet understudied condition. As the population ages and CPPD becomes more prevalent, there is an urgent need to better understand the disease and the mechanisms involved in crystal formation and deposition, in order to improve diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Sirotti
- Rheumatology Department, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Anna Scanu
- Department of Women's and Children's Health, University of Padova, Padua, Italy
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Tristan Pascart
- Department of Rheumatology, ETHICS Laboratory, Saint-Philibert Hospital, Lille Catholic University, Lille, France
| | - Tom Niessink
- Personalized Diagnostics and Therapeutics, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
- Department of Rheumatology, VieCuri Medical Centre, Venlo, the Netherlands
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Georgios Filippou
- Rheumatology Department, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy.
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Chen J, Wang Y, Tang T, Li B, Kundu B, Kundu SC, Reis RL, Lin X, Li H. Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects. J Nanobiotechnology 2024; 22:453. [PMID: 39080653 PMCID: PMC11290091 DOI: 10.1186/s12951-024-02712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-β3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-β3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-β3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.
Collapse
Affiliation(s)
- Jiping Chen
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
- Department of Stomatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu, China
| | - Yanyi Wang
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Tianyi Tang
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Baochao Li
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Banani Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Department of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, 310053, China.
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Han J, Luo J, Wang C, Kapilevich L, Zhang XA. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother 2024; 174:116570. [PMID: 38599063 DOI: 10.1016/j.biopha.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk State University, Tomsk 634050, Russia
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China.
| |
Collapse
|
7
|
Ruths L, Huber-Lang M, Schulze-Tanzil G, Riegger J. Anaphylatoxins and their corresponding receptors as potential drivers in cartilage calcification during osteoarthritis progression. Osteoarthritis Cartilage 2024; 32:514-525. [PMID: 38242312 DOI: 10.1016/j.joca.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE The complement cascade as major fluid phase innate immune system is activated during progression of osteoarthritis (OA). Generated anaphylatoxins and the corresponding receptors C3aR and C5aR1 are associated with the calcification of blood vessels and involved in osteogenic differentiation. This study aims on elucidating whether complement activation products contribute to cartilage calcification of OA cartilage. METHOD Human articular chondrocytes were osteogenically differentiated in vitro in the presence or absence of C3a, C5a, and bone morphogenetic protein (BMP) 2. Furthermore, macroscopically intact (OARSI grade ≤ 1) and highly degenerated human cartilage (OARSI grade ≥ 3) was used for C3aR and C5aR1 histochemistry. Calcification of the cartilage was assessed by Alizarin Red S and von Kossa staining. RESULTS C3a and C5a amplified matrix mineralization during in vitro osteogenesis, while inhibition of the corresponding receptors impaired calcium deposition. Moreover, C3aR and C5aR1 expression was upregulated during osteogenic differentiation and also in degenerated cartilage. Additionally, anaphylatoxin receptor expression was positively associated with calcification of native cartilage tissue and calcium deposition during osteogenic differentiation. Finally, the pro-hypertrophic growth factor BMP2 induced the expression of C5aR1. CONCLUSIONS Our findings indicate that anaphylatoxins and their receptors play a decisive role in cartilage calcification processes during OA progression.
Collapse
Affiliation(s)
- Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
8
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Peng R, Shang J, Jiang N, Chi-Jen H, Gu Y, Xing B, Hu R, Wu B, Wang D, Xu X, Lu H. Klf10 is involved in extracellular matrix calcification of chondrocytes alleviating chondrocyte senescence. J Transl Med 2024; 22:52. [PMID: 38217021 PMCID: PMC10790269 DOI: 10.1186/s12967-023-04666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/27/2023] [Indexed: 01/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease resulting joint disability and pain. Accumulating evidences suggest that chondrocyte extracellular matrix calcification plays an important role in the development of OA. Here, we showed that Krüppel-like factor 10 (Klf10) was involved in the regulation of chondrocyte extracellular matrix calcification by regulating the expression of Frizzled9. Knockdown of Klf10 attenuated TBHP induced calcification and reduced calcium content in chondrocytes. Restoring extracellular matrix calcification of chondrocytes could aggravate chondrocyte senescence. Destabilization of a medial meniscus (DMM) mouse model of OA, in vivo experiments revealed that knockdown Klf10 improved the calcification of articular cartilage and ameliorated articular cartilage degeneration. These findings suggested that knockdown Klf10 inhibited extracellular matrix calcification-related changes in chondrocytes and alleviated chondrocyte senescence.
Collapse
Affiliation(s)
- Rong Peng
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ning Jiang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, Shandong, China
| | - Hsu Chi-Jen
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yu Gu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Baizhou Xing
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Renan Hu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Dawei Wang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Xianghe Xu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
10
|
Steinwerth P, Bertrand J, Sandt V, Marchal S, Sahana J, Bollmann M, Schulz H, Kopp S, Grimm D, Wehland M. Structural and Molecular Changes of Human Chondrocytes Exposed to the Rotating Wall Vessel Bioreactor. Biomolecules 2023; 14:25. [PMID: 38254625 PMCID: PMC10813504 DOI: 10.3390/biom14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last 30 years, the prevalence of osteoarthritis (OA), a disease characterized by a loss of articular cartilage, has more than doubled worldwide. Patients suffer from pain and progressive loss of joint function. Cartilage is an avascular tissue mostly consisting of extracellular matrix with embedded chondrocytes. As such, it does not regenerate naturally, which makes an early onset of OA prevention and treatment a necessity to sustain the patients' quality of life. In recent years, tissue engineering strategies for the regeneration of cartilage lesions have gained more and more momentum. In this study, we aimed to investigate the scaffold-free 3D cartilage tissue formation under simulated microgravity in the NASA-developed rotating wall vessel (RWV) bioreactor. For this purpose, we cultured both primary human chondrocytes as well as cells from the immortalized line C28/I2 for up to 14 days on the RWV and analyzed tissue morphology, development of apoptosis, and expression of cartilage-specific proteins and genes by histological staining, TUNEL-assays, immunohistochemical detection of collagen species, and quantitative real-time PCR, respectively. We observed spheroid formation in both cell types starting on day 3. After 14 days, constructs from C28/I2 cells had diameters of up to 5 mm, while primary chondrocyte spheroids were slightly smaller with 3 mm. Further inspection of the 14-day-old C28/I2 spheroids revealed a characteristic cartilage morphology with collagen-type 1, -type 2, and -type 10 positivity. Interestingly, these tissues were less susceptible to RWV-induced differential gene expression than those formed from primary chondrocytes, which showed significant changes in the regulation of IL6, ACTB, TUBB, VIM, COL1A1, COL10A1, MMP1, MMP3, MMP13, ITGB1, LAMA1, RUNX3, SOX9, and CASP3 gene expression. These diverging findings might reflect the differences between primary and immortalized cells. Taken together, this study shows that simulated microgravity using the RWV bioreactor is suitable to engineer dense 3D cartilage-like tissue without addition of scaffolds or any other artificial materials. Both primary articular cells and the stable chondrocyte cell line C28/I2 formed 3D neocartilage when exposed for 14 days to an RWV.
Collapse
Affiliation(s)
- Paul Steinwerth
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (J.B.); (M.B.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (J.B.); (M.B.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Sascha Kopp
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
- Core Facility Tissue Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| |
Collapse
|
11
|
Jarraya M, Roemer F, Kwoh CK, Guermazi A. Crystal arthropathies and osteoarthritis-where is the link? Skeletal Radiol 2023; 52:2037-2043. [PMID: 36538066 DOI: 10.1007/s00256-022-04246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide. As our understanding of OA progressively has moved from a purely mechanical "wear and tear" concept toward a complex multi-tissue condition in which inflammation plays a central role, the possible role of crystal-induced inflammation in OA incidence and progression may be relevant. In addition to gout, which affects 4% of the US population, basic calcium phosphate and calcium pyrophosphate deposition both may induce joint inflammation and may play a role in pain in OA. This narrative review article discusses the possible mechanisms underlying the associations between crystal-induced arthropathies and OA, and the important implications of these for clinical practice and future research.
Collapse
Affiliation(s)
- Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, YAW 6044, Boston, MA, 02114, USA.
| | - Frank Roemer
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - C Kent Kwoh
- Division of Rheumatology, The University of Arizona, Tucson, AZ, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
12
|
Liew JW. Intra-articular Mineralization and Association with Osteoarthritis Development and Outcomes. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2023. [DOI: 10.1007/s40674-023-00203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Che H, Shao Z, Ding J, Gao H, Liu X, Chen H, Cai S, Ge J, Wang C, Wu J, Hao Y. The effect of allyl isothiocyanate on chondrocyte phenotype is matrix stiffness-dependent: Possible involvement of TRPA1 activation. Front Mol Biosci 2023; 10:1112653. [PMID: 37006615 PMCID: PMC10060966 DOI: 10.3389/fmolb.2023.1112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease with increasing prevalence. Chondrocytes (CHs) are highly differentiated end-stage cells with a secretory phenotype that keeps the extracellular matrix (ECM) balanced and the cartilage environment stable. Osteoarthritis dedifferentiation causes cartilage matrix breakdown, accounting for one of the key pathogenesis of osteoarthritis. Recently, the activation of transient receptor potential ankyrin 1 (TRPA1) was claimed to be a risk factor in osteoarthritis by causing inflammation and extracellular matrix degradation. However, the underlying mechanism is still unknown. Due to its mechanosensitive property, we speculated that the role of TRPA1 activation during osteoarthritis is matrix stiffness-dependent. In this study, we cultured the chondrocytes from patients with osteoarthritis on stiff vs. soft substrates, treated them with allyl isothiocyanate (AITC), a transient receptor potential ankyrin 1 agonist, and compared the chondrogenic phenotype, containing cell shape, F-actin cytoskeleton, vinculin, synthesized collagen profiles and their transcriptional regulatory factor, and inflammation-related interleukins. The data suggest that allyl isothiocyanate treatment activates transient receptor potential ankyrin 1 and results in both positive and harmful effects on chondrocytes. In addition, a softer matrix could help enhance the positive effects and alleviate the harmful ones. Thus, the effect of allyl isothiocyanate on chondrocytes is conditionally controllable, which could be associated with transient receptor potential ankyrin 1 activation, and is a promising strategy for osteoarthritis treatment.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jiangchen Ding
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiangyu Liu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hailong Chen
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuangyu Cai
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaying Ge
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengqiang Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Yuefeng Hao, ; Jun Wu, ; Chengqiang Wang,
| | - Jun Wu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Yuefeng Hao, ; Jun Wu, ; Chengqiang Wang,
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Yuefeng Hao, ; Jun Wu, ; Chengqiang Wang,
| |
Collapse
|
14
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Development of a cyclic-inverso AHSG/Fetuin A-based peptide for inhibition of calcification in osteoarthritis. Osteoarthritis Cartilage 2022; 31:727-740. [PMID: 36414226 DOI: 10.1016/j.joca.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Ectopic calcification is an important contributor to chronic diseases, such as osteoarthritis. Currently, no effective therapies exist to counteract calcification. We developed peptides derived from the calcium binding domain of human Alpha-2-HS-Glycoprotein (AHSG/Fetuin A) to counteract calcification. METHODS A library of seven 30 amino acid (AA) long peptides, spanning the 118 AA Cystatin 1 domain of AHSG, were synthesized and evaluated in an in vitro calcium phosphate precipitation assay. The best performing peptide was modified (cyclic, retro-inverso and combinations thereof) and evaluated in cellular calcification models and the rat Medial Collateral Ligament Transection + Medial Meniscal Tear (MCLT + MMT) osteoarthritis model. RESULTS A cyclic peptide spanning AA 1-30 of mature AHSG showed clear inhibition of calcium phosphate precipitation in the nM-pM range that far exceeded the biological activity of the linear peptide variant or bovine Fetuin. Biochemical and electron microscopy analyses of calcium phosphate particles revealed a similar, but distinct, mode of action in comparison with bFetuin. A cyclic-inverso variant of the AHSG 1-30 peptide inhibited calcification of human articular chondrocytes, vascular smooth muscle cells and during osteogenic differentiation of bone marrow derived stromal cells. Lastly, we evaluated the effect of intra-articular injection of the cyclic-inverso AHSG 1-30 peptide in a rat osteoarthritis model. A significant improvement was found in histopathological osteoarthritis score and animal mobility. Serum levels of IFNγ were found to be lower in AHSG 1-30 peptide treated animals. CONCLUSIONS The cyclic-inverso AHSG 1-30 peptide directly inhibits the calcification process and holds the potential for future application in osteoarthritis.
Collapse
|
16
|
Wang Y, Zhao H, Jia S, Wang Q, Yao W, Yang Y, Bai L. Senomorphic agent pterostilbene ameliorates osteoarthritis through the PI3K/AKT/NF-κB axis: an in vitro and in vivo study. Am J Transl Res 2022; 14:5243-5262. [PMID: 36105068 PMCID: PMC9452324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common joint disease in the world. Among the many risk factors for OA, aging is one of the most critical factors. The treatment with senop-associated secretory phenotype (SASP) is one of the important, promising anti-aging strategies at present. Pterostilbene (PTE) is a trans-stilbene compound with anti-tumor, anti-oxidation, anti-inflammatory, and anti-aging pharmacologic activities. The purpose of this study is to explore the therapeutic effects of PTE on articular chondrocyte senescence and OA and its related mechanisms. METHODS Male Sprague-Dawley rats were operated on with transection of the anterior cruciate ligament (ACLT) and a destabilized medial meniscus (DMM) surgery to establish the OA model and then injected intraperitoneally with PTE (20 mg/kg) for 5 weeks. Finally, rats were sacrificed and knee joints were collected for histologic analysis. Rat chondrocytes were stimulated with interleukin-1β (IL-1β) with or without PTE treatment. The therapeutic effects of PTE and related mechanisms were investigated by examining and analyzing relative markers through senescence-associated β-galactosidase (SA-β-Gal) assay, cell cycle, qRT-PCR, western blot, bioinformatic analysis, immunofluorescence, and molecular modeling. RESULTS With in vivo experiments, PTE can significantly reduce the Mankin scores and OARSI scores of the knee joint in ACLT+DMM OA model rats and reduce the interleukin-6 (IL-6) level in the knee lavage fluid. Immunohistochemical staining showed that compared to the OA group, the PTE treatment group had significantly increased expression of collagen type II in articular cartilage, and significantly decreased matrix metalloproteinase 13 (MMP-13) and IL-6, the main SASP proteins, and had expression of p16 and p21, markers of aging in chondrocytes. In vitro, PTE reduced the ratio of SA-β-Gal positive chondrocytes and G0-G1 phase chondrocytes in IL-1β-induced rat chondrocytes. PTE significantly inhibited the expression of MMP-13, IL-6, thrombospondin motif 5 (ADAMTS5), p16, and p21, and significantly increased the expression of collagen type II. Bioassay and subsequent western blot showed that PTE significantly inhibited the activation of PI3K/AKT and NF-κB signaling pathways. The results of molecular docking experiments showed that PTE could bind closely to the sites of PI3K protein, thereby inhibiting the phosphorylation of PI3K. CONCLUSIONS The experimental results indicate that PTE plays an anti-chondrocyte senescence role in the treatment of OA by inhibiting the PI3K/AKT/NF-κB signaling pathway and reducing expression of SASP.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical UniversityShenyang 110004, Liaoning, PR China
- Department of Orthopedics Surgery, Affiliated Hospital of Chengde Medical College36 Nanyingzi Street, Shuangqiao District, Chengde 067000, Hebei, PR China
| | - Huai Zhao
- Department of General Surgery, Shengjing Hospital Affiliated China Medical UniversityShenyang 110004, Liaoning PR China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical UniversityShenyang 110004, Liaoning, PR China
| | - Qian Wang
- Department of Orthopedics Surgery, Affiliated Hospital of Chengde Medical College36 Nanyingzi Street, Shuangqiao District, Chengde 067000, Hebei, PR China
| | - Wuyi Yao
- Department of Orthopedics Surgery, Affiliated Hospital of Chengde Medical College36 Nanyingzi Street, Shuangqiao District, Chengde 067000, Hebei, PR China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical UniversityShenyang 110004, Liaoning, PR China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical UniversityShenyang 110004, Liaoning, PR China
| |
Collapse
|
17
|
Scotece M, Vaamonde-García C, Lechuga-Vieco AV, Cortés AC, Gómez MCJ, Filgueira-Fernández P, Rego-Pérez I, Enríquez JA, Blanco FJ. mtDNA variability determines spontaneous joint aging damage in a conplastic mouse model. Aging (Albany NY) 2022; 14:5966-5983. [PMID: 35779570 PMCID: PMC9417242 DOI: 10.18632/aging.204153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
Mitochondria and mtDNA variations contribute to specific aspects of the aging process. Here, we aimed to investigate the influence of mtDNA variation on joint damage in a model of aging using conplastic mice. A conplastic (BL/6NZB) mouse strain was developed with the C57BL/6JOlaHsd nuclear genome and NZB/OlaHsd mtDNA, for comparison with the original C57BL/6JOlaHsd strain (BL/6C57). Conplastic (BL/6NZB) and BL/6C57 mice were sacrificed at 25, 75, and 90 weeks of age. Hind knee joints were processed for histological analysis and joint pathology graded using the Mankin scoring system. By immunohistochemistry, cartilage expression of markers of autophagy (LC3, Beclin-1, and P62) and markers of senescence (MMP13, beta-Galactosidase, and p16) and proliferation (Ki67) were analyzed. We also measured the expression of 8-oxo-dG and cleaved caspase-3. Conplastic (BL/6NZB) mice presented lower Mankin scores at 25, 75, and 90 weeks of age, higher expression of LC3 and Beclin-1 and lower of P62 in cartilage than the original strain. Moreover, the downregulation of MMP13, beta-Galactosidase, and p16 was detected in cartilage from conplastic (BL/6NZB) mice, whereas higher Ki67 levels were detected in these mice. Finally, control BL/6C57 mice showed higher cartilage expression of 8-oxo-dG and cleaved caspase-3 than conplastic (BL/6NZB) mice. This study demonstrates that mtDNA genetic manipulation ameliorates joint aging damage in a conplastic mouse model, suggesting that mtDNA variability is a prognostic factor for aging-related osteoarthritis (OA) and that modulation of mitochondrial oxidative phosphorylation (OXPHOS) could be a novel therapeutic target for treating OA associated with aging.
Collapse
Affiliation(s)
- Morena Scotece
- Unidad de Genómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña 15006, Spain
| | - Carlos Vaamonde-García
- Unidad de Genómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña 15006, Spain.,Universidade da Coruña (UDC), Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Campus de Zapateria, A Coruña 15011, Spain
| | - Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain.,CIBERES: C/ Melchor Fernández-Almagro 3, Madrid 28029, Spain.,Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, UK
| | - Alberto Centeno Cortés
- Centro Tecnológico de Formación Xerencia de Xestión Integrada A Coruña (XXIAC), A Coruña 15006, Spain
| | | | - Purificación Filgueira-Fernández
- Unidad de Genómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña 15006, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Ignacio Rego-Pérez
- Unidad de Genómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña 15006, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, C/ Melchor Fernández-Almagro 3, Madrid 28029, Spain
| | - Francisco J Blanco
- Unidad de Genómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña 15006, Spain.,Universidade da Coruña (UDC), Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, A Coruña 15008, Spain
| |
Collapse
|
18
|
Identification of Common Pathogenic Pathways Involved in Hemochromatosis Arthritis and Calcium Pyrophosphate Deposition Disease: a Review. Curr Rheumatol Rep 2022; 24:40-45. [PMID: 35143028 DOI: 10.1007/s11926-022-01054-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Arthritis is a common clinical manifestation of hereditary hemochromatosis (HH), and HH is one of a handful of conditions linked to calcium pyrophosphate deposition (CPPD) in joints. The connection between these two types of arthritis has not yet been fully elucidated. In light of new pathogenic pathways recently implicated in CPPD involving bone, we reviewed the literature on the etiology of hemochromatosis arthropathy (HHA) seeking shared pathogenic mechanisms. RESULTS Clinical observations reinforce striking similarities between HHA and CPPD even in the absence of CPP crystals. They share a similar joint distribution, low grade synovial inflammation, and generalized bone loss. Excess iron damages chondrocytes and bone cells in vitro. While direct effects of iron on cartilage are not consistently seen in animal models of HH, there is decreased osteoblast alkaline phosphatase activity, and increased osteoclastogenesis. These abnormalities are also seen in CPPD. Joint repair processes may also be impaired in both CPPD and HHA. CONCLUSIONS Possible shared pathogenic pathways relate more to bone and abnormal damage/repair mechanisms than direct damage to articular cartilage. While additional work is necessary to fully understand the pathogenesis of arthritis in HH and to firmly establish causal links with CPPD, this review provides some plausible hypotheses explaining the overlap of these two forms of arthritis.
Collapse
|