1
|
Yuan M, Chatterjee S, Leys M, Odom JV, Salido EM. Prevalence of IMPG1 and IMPG2 Mutations Leading to Retinitis Pigmentosa or Vitelliform Macular Dystrophy in a Cohort of Patients with Inherited Retinal Dystrophies. Genes (Basel) 2025; 16:43. [PMID: 39858590 PMCID: PMC11764596 DOI: 10.3390/genes16010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The interphotoreceptor matrix proteoglycans 1 and 2 (IMPG1 and IMPG2) are two interdependent proteoglycans of the interphotoreceptor matrix (IPM). Mutations in IMPG1 or IMPG2 are linked to retinal diseases such as retinitis pigmentosa (RP) and vitelliform macular dystrophy (VMD), yet the specific mutations responsible for each condition remain undefined. This study identifies mutations in IMPG1 and IMPG2 linked to either RP or VMD. It also provides an in-depth in silico analysis of these mutations' structural and functional impact on protein domains, alongside a detailed examination of the corresponding disease phenotypes. METHODS From a cohort of 480 patients with inherited retinal diseases (IRDs), we identified seven patients with mutations in IMPG1 or IMPG2. Multimodal imaging was performed to assess the clinical phenotypes, including fundus photography, fundus autofluorescence, fluorescein angiography, and spectral domain optical coherence tomography (SD-OCT). We provide structure modeling and analysis of each variant. RESULTS Our findings indicate a prevalence of 1.45% of IRD patients being affected by IMPG mutations; two were diagnosed with RP and five with VMD. One VMD patient carried a novel IMPG1 p.Asp423Glu mutation. Most patients exhibited heterozygous mutations, and one RP patient presented a compound heterozygous mutation in IMPG2. CONCLUSIONS This work describes a novel mutation and expands our understanding of the specific IMPG protein domains implicated in RP and VMD. Furthermore, it establishes, for the first time, the prevalence of IMPG mutations in an IRD population.
Collapse
Affiliation(s)
- Ming Yuan
- West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA;
| | - Souradip Chatterjee
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Monique Leys
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506, USA; (M.L.); (J.V.O.)
| | - J. Vernon Odom
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506, USA; (M.L.); (J.V.O.)
| | - Ezequiel M. Salido
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506, USA; (M.L.); (J.V.O.)
| |
Collapse
|
2
|
Hassanpoor N, Ebrahimiadib N, Riazi-Esfahani H, Moghaddasi A, Suri F. Bilateral helicoid peri-papillary sub-retinal fibrosis due to a biallelic NR2E3 mutation: Describing variable expressivity of a mutation. Eur J Ophthalmol 2024; 34:1761-1769. [PMID: 38444285 DOI: 10.1177/11206721241234396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND To describe different clinical presentations of a same NR2E3 recessive mutation in two families and within one family. DESIGN Interventional family study. RESULTS Our first case was a one-year-old male child with high hyperopia and refractive accommodative esotropia. In retinal examination, peri-papillary sub-retinal fibrosis with a helicoid configuration was observed in both eyes. The parents and the only sibling had no pathologic findings in the eyes. The child showed to have severely reduced responses in both photopic and scotopic electroretinogram components. In the genetic investigation, a homozygous autosomal recessive mutation in the NR2E3 gene (IVS1-2A > C) was discovered in the affected child, while the other family members were heterozygous for this mutation. We followed up with the patient for 3 years and no new lesion developed during this period. The second case was a 13-year-old male child referred to the retina clinic for decreased vision in the right eye. In retina examination, there were nummular pigmentary changes at the level of retinal pigment epithelium and along the vascular arcades with foveo-schitic changes in both eyes. A choroidal neovascularization (CNV) was noticed in the macula of his right eye. The genetic evaluation proved the same mutation in the NR2E3 gene as in the first case. Family history was remarkable for an uncle, an aunt, and two cousins with night blindness. CONCLUSION Same NR2E3 gene mutation can cause heterogeneous clinical manifestations such as slight retinal changes in the absence of any visual symptoms to high hyperopia associated with helicoid peri-papillary sub-retinal fibrosis.
Collapse
Affiliation(s)
- Narges Hassanpoor
- Retina & Vitreous Service, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Ebrahimiadib
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Hamid Riazi-Esfahani
- Retina & Vitreous Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrooz Moghaddasi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Di Iorio E, Adamo GG, Sorrentino U, De Nadai K, Barbaro V, Mura M, Pellegrini M, Boaretto F, Tavolato M, Suppiej A, Nasini F, Salviati L, Parmeggiani F. Pseudodominant inheritance of retinitis pigmentosa in a family with mutations in the Eyes Shut Homolog (EYS) gene. Sci Rep 2024; 14:18580. [PMID: 39127808 PMCID: PMC11316741 DOI: 10.1038/s41598-024-69640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Sequence variants in Eyes Shut Homolog (EYS) gene are one of the most frequent causes of autosomal recessive retinitis pigmentosa (RP). Herein, we describe an Italian RP family characterized by EYS-related pseudodominant inheritance. The female proband, her brother, and both her sons showed typical RP, with diminished or non-recordable full-field electroretinogram, narrowing of visual field, and variable losses of central vision. To investigate this apparently autosomal dominant pedigree, next generation sequencing (NGS) of a custom panel of RP-related genes was performed, further enhanced by bioinformatic detection of copy-number variations (CNVs). Unexpectedly, all patients had a compound heterozygosity involving two known pathogenic EYS variants i.e., the exon 33 frameshift mutation c.6714delT and the exon 29 deletion c.(5927þ1_5928-1)_(6078þ1_6079-1)del, with the exception of the youngest son who was homozygous for the above-detailed frameshift mutation. No pathologic eye conditions were instead observed in the proband's husband, who was a heterozygous healthy carrier of the same c.6714delT variant in exon 33 of EYS gene. These findings provide evidence that pseudodominant pattern of inheritance can hide an autosomal recessive RP partially or totally due to CNVs, recommending CNVs study in those pedigrees which remain genetically unsolved after the completion of NGS or whole exome sequencing analysis.
Collapse
Affiliation(s)
- Enzo Di Iorio
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
| | - Ginevra Giovanna Adamo
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
- Department of Women and Children's Health, University of Padova, 35121, Padova, Italy
| | - Katia De Nadai
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy
| | | | - Marco Mura
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
- King Khaled Eye Specialist Hospital, 11462, Riyadh, Saudi Arabia
| | - Marco Pellegrini
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Boaretto
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
| | - Marco Tavolato
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy
| | - Agnese Suppiej
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Francesco Nasini
- Ophthalmic Unit, Azienda Ospedaliero Universitaria di Ferrara, 44124, Cona, Ferrara, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
- Department of Women and Children's Health, University of Padova, 35121, Padova, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy.
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy.
| |
Collapse
|
4
|
Kalyta K, Stelmaszczyk W, Szczęśniak D, Kotuła L, Dobosz P, Mroczek M. The Spectrum of the Heterozygous Effect in Biallelic Mendelian Diseases-The Symptomatic Heterozygote Issue. Genes (Basel) 2023; 14:1562. [PMID: 37628614 PMCID: PMC10454578 DOI: 10.3390/genes14081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Heterozygous carriers of pathogenic/likely pathogenic variants in autosomal recessive disorders seem to be asymptomatic. However, in recent years, an increasing number of case reports have suggested that mild and unspecific symptoms can occur in some heterozygotes, as symptomatic heterozygotes have been identified across different disease types, including neurological, neuromuscular, hematological, and pulmonary diseases. The symptoms are usually milder in heterozygotes than in biallelic variants and occur "later in life". The status of symptomatic heterozygotes as separate entities is often disputed, and alternative diagnoses are considered. Indeed, often only a thin line exists between dual, dominant, and recessive modes of inheritance and symptomatic heterozygosity. Interestingly, recent population studies have found global disease effects in heterozygous carriers of some genetic variants. What makes the few heterozygotes symptomatic, while the majority show no symptoms? The molecular basis of this phenomenon is still unknown. Possible explanations include undiscovered deep-splicing variants, genetic and environmental modifiers, digenic/oligogenic inheritance, skewed methylation patterns, and mutational burden. Symptomatic heterozygotes are rarely reported in the literature, mainly because most did not undergo the complete diagnostic procedure, so alternative diagnoses could not be conclusively excluded. However, despite the increasing accessibility to high-throughput technologies, there still seems to be a small group of patients with mild symptoms and just one variant of autosomes in biallelic diseases. Here, we present some examples, the current state of knowledge, and possible explanations for this phenomenon, and thus argue against the existing dominant/recessive classification.
Collapse
Affiliation(s)
- Kateryna Kalyta
- School of Life Sciences, FHNW—University of Applied Sciences, 4132 Muttenz, Switzerland;
| | - Weronika Stelmaszczyk
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Dominika Szczęśniak
- Institute of Psychiatry and Neurology in Warsaw, Genetics Department, 02-957 Warsaw, Poland;
| | - Lidia Kotuła
- Department of Genetics, Medical University, 20-080 Lublin, Poland;
| | - Paula Dobosz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland;
| | - Magdalena Mroczek
- University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
Robles Bocanegra A, Tato J, Molina Thurin LJ, Izquierdo N, Oliver AL. Pseudodominant Inheritance of Retinitis Pigmentosa Due to Mutations in the Phosphodiesterase 6B Gene: A Case Report. Cureus 2023; 15:e34933. [PMID: 36938204 PMCID: PMC10016385 DOI: 10.7759/cureus.34933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Mutations in the phosphodiesterase 6B (PDE6B) gene are a rare cause of autosomal recessive retinitis pigmentosa (arRP). We report on a non-consanguineous family with a pseudodominant inheritance of RP due to PDE6B mutations. We conducted a chart review of four members of a Puerto Rican family who underwent a comprehensive ophthalmic evaluation by at least one of the authors. The mutational screening was done using a genotyping microarray provided by Invitae Corporation, using next-generation sequencing (NGS) technology. Genomic DNA obtained from saliva samples is enriched for targeted regions using a hybridization-based protocol and sequenced using Illumina technology. A descriptive analysis was done. Patient 1A had a normal ophthalmic examination and a heterozygous pathogenic variant in the PDE6B gene c.1540del PLeu514Trpfs*61. Patients 1B, 2A, and 2B had mid-peripheral retinitis pigmentosa, concentric visual field ring scotomata in both eyes (OU), extinguished electroretinogram (ERG), and homozygous pathogenic variants in the PDE6B gene c.1540del PLeu514Trpfs*61. Even though mutations in the PDE6B gene usually lead to arRP, they may be inherited in a pseudodominant pattern in geographically isolated populations. Genotyping studies in patients with RP are warranted to classify inheritance mode correctly.
Collapse
Affiliation(s)
| | - Javier Tato
- Ophthalmology, Ponce Health Sciences University, Ponce, PRI
| | | | - Natalio Izquierdo
- Surgery, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PRI
| | - Armando L Oliver
- Ophthalmology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, USA
| |
Collapse
|