1
|
Wang Y, Xu H, Wei W, Yu L, Meng X, Wang X. Physicochemical characterization, bioactive compounds, and in vitro digestion characteristics of Moringa oleifera seed oil: a comprehensive investigation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3572-3581. [PMID: 39761328 DOI: 10.1002/jsfa.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 04/12/2025]
Abstract
BACKGROUND Moringa oleifera is a wild plant belonging to the genus Moringa and the family Moringaceae, which possesses valuable nutritional and medicinal properties and is inexpensive. The present study aimed to provide a comprehensive assessment of the potential of M. oleifera seed oil (MoSO) as a food ingredient by investigating its physicochemical properties, bioactivity, and in vitro digestion characteristics. RESULTS The results revealed that MoSO exhibited a high oleic acid content, which constituted 72.06 ± 0.17% of the total fatty acid content. The oil consisted of ten primary triacylglycerols, with O-O-O (40.64 ± 0.41%), Do-O-O (17.22 ± 0.17%), O-O-P (14.92 ± 0.15%) and Eo-O-P (10.50 ± 0.10%) being the most abundant. It contained certain bioactive compounds, such as tocopherols (224.04 ± 1.78 mg/kg) and phytosterols (2155.65 ± 23.45 mg/kg). The in vitro digestion behavior of MoSO emulsion was also investigated. The maximum release of free fatty acids in MoSO was 90.14 ± 2.77%, surpassing that observed in soybean oil (85.62 ± 3.01%). Moringa oleifera seed oil also exhibited a substantial release of oleic acid and greater bioaccessibility. CONCLUSION These findings contribute to the current knowledge on MoSO as a promising candidate for a high-quality edible vegetable oil. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yandan Wang
- School of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiahe Food Industry Co., Ltd, Suzhou, China
| | - Hua Xu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Le Yu
- School of Life Sciences, Anhui Normal University, Wuhu, China
- Jiahe Food Industry Co., Ltd, Suzhou, China
| | - Xiangyong Meng
- School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Nadeem M, Zarreen F, Rizvi MMA. GC-MS analysis of phytochemical composition and anticancer activities of methanol and aqueous extracts of Bergenia ligulata rhizome. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:623-634. [PMID: 40109681 PMCID: PMC11914585 DOI: 10.1007/s13197-024-06047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 03/22/2025]
Abstract
Bergenia ligulata is an important medicinal plant used in traditional systems of medicine for its diuretic, antilithiatic, antidiabetic, antibacterial, and anticancer properties. This study aimed to investigate the chemical composition of methanolic and aqueous extracts of Bergenia ligulata rhizome and assess their anticancer activities against various cancer cell lines. The investigation entailed Gas chromatography-mass spectrometry (GC-MS) for phytochemical analysis, the MTT assay for cytotoxicity assessment, and DAPI staining for nuclear morphological analysis. GC-MS analysis revealed 45 phytochemical constituents in methanol extract and 35 in aqueous extract, with each extract containing six major phytoconstituents. Dihydro-3-methylene-5-methyl-2-furanone (α-Methylene-γ-valerolactone), oleic acid, and n-Hexadecanoic acid were identified as the common constituents in both the extracts. The cytotoxic evaluation demonstrated potent antiproliferative effects of both extracts against tested cancer cells and biocompatibility with HEK-293 cells. Additionally, methanolic and aqueous extracts induced nuclear fragmentation and condensation in T24 cells. These findings underscore the presence of diverse phytoconstituents in B. ligulata and suggest its potential as a natural anticancer agent. Further research is warranted to explore the anticancer activities of the main bioactive compounds in B. ligulata rhizome extracts and to elucidate their possible molecular mechanism of action in different cancers.
Collapse
Affiliation(s)
- Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Faqua Zarreen
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
3
|
Dash BS, Lai YC, Chen JP. Folic Acid-Conjugated Magnetic Oleoyl-Chitosan Nanoparticles for Controlled Release of Doxorubicin in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:415. [PMID: 40137588 PMCID: PMC11944324 DOI: 10.3390/nano15060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide magnetically targeted delivery of DOX in cancer therapy. Using folic acid (FA)-grafted OC, FA-conjugated DOX-entrapped magnetic OC (FA-DOX-MOC) NPs were prepared similarly for FA-mediated active targeting of cancer cells with overexpressed folate receptors. Considering DOX loading and release, the best conditions for preparing DOX-MOC NPs were an OC:TPP mass ratio = 1:4 and OC concentration = 0.2%. These spherical NPs had a particle size of ~250 nm, 87.9% Fe3O4 content, 53.1 emu/g saturation magnetization, 83.1% drug encapsulation efficacy, and 2.81% drug loading efficiency. FA did not significantly change the physico-chemical characteristics of FA-DOX-MOC compared to DOX-MOC, and both NPs showed pH-dependent drug release behaviors, with much faster release of DOX at acidic pH values found in endosomes. However, FA could enhance the intracellular uptake of the NPs and DOX accumulation in the nucleus. This active targeting effect led to significantly higher cytotoxicity towards U87 cancer cells. These results suggest that FA-DOX-MOC NPs can efficiently deliver DOX for controlled drug release in cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Yi-Chian Lai
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
4
|
Ngo HV, Nguyen HD, Lee BJ. Hyaluronic acid conjugates with controlled oleic acid substitution as new nanomaterials for improving ocular co-delivery of cyclosporine A and oleic acid. Asian J Pharm Sci 2025; 20:101009. [PMID: 39926634 PMCID: PMC11804554 DOI: 10.1016/j.ajps.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025] Open
Abstract
A structural conjugate (HOC) of polysaccharide, hyaluronic acid (HA) with different ratios of oleic acid (OA) via cystamine (CYS) linker as a new ocular biomaterial was developed. The HOCs with controlled degrees of substitution of OA (4.6 %, 8.3 % and 12.2 %) were synthesized to form self-assembled HA-CYS-OA nanoparticles (HONs, HON1, HON2, HON3). A poorly water-soluble cyclosporine A (CsA) to be used for the treatment of multifactorial dry eye disease (DED) was chosen as model drug. CsA-loaded HONs exhibited improved solution transparency via solubilizing capacity of HON, and increased in vitro drug permeation compared to Restasis®. The physicochemical properties of CsA-loaded HONs such as nano behaviors, solution transparency, drug release, drug permeation and ocular cytocompatibility were highly variable according to the ratios of OA substitution. Interestingly, this CsA-loaded HON1 as optimal ocular nanoformulation showed markedly augmented macrophage polarization into the M2 phenotype, downregulated the expression of proinflammatory cytokines levels in LPS-induced M1 macrophage, and effectively inhibited VEGF-induced endothelial cell proliferation and capillary-like tube formation by the synergistic effect of CsA and HON1 containing OA at the same time. Collectively, the current fatty acid conjugated to HA, named fattigation platform, providing the roles and physicochemical properties via structural features of HA could be a promising co-delivery strategy of drug and fatty acid for DED and other ophthalmic disease treatments.
Collapse
Affiliation(s)
- Hai V. Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hy D. Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Yoon JH, Kim DO, Lee S, Lee BH, Kim ES, Son YK, Kopalli SR, Lee JH, Ju Y, Lee J, Cho JY. Anti-apoptotic, anti-inflammatory, and anti-melanogenic effects of the ethanol extract of Picrasma quassioides (D. Don) Benn. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118374. [PMID: 38789093 DOI: 10.1016/j.jep.2024.118374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Dong-Ock Kim
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Byong-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Eun Sil Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Youn Kyoung Son
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, South Korea.
| | - Ji Heun Lee
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Youngwoon Ju
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Jongsung Lee
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jae Youl Cho
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
6
|
Sruthi D, John Zachariah T. Volatile and non-volatile metabolite profiling of under-explored crop Piper colubrinum Link. with chromatography mass spectrometry approach and its biochemical diversity from medicinally valued Piper species. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124260. [PMID: 39178608 DOI: 10.1016/j.jchromb.2024.124260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/09/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Piper colubrinum Link. is an underexplored crop regarding its metabolites and therapeutic attributes. Current study aimed to identify the possible volatile and non-volatile metabolites of P. colubrinum fruit and studied its metabolite diversity with medicinally valued Piper species viz. P. nigrum L., P. longum L. and P. chaba Hunter. The volatile constituents of P. colubrinum essential oil by GC-MS revealed the presence of sesquiterpenes as the major contribution. The sesquiterpenes α-muurolol (12.5 %) and β-caryophyllene (11.3 %) were the predominant volatile components. Few aliphatic compounds like n-heptadecane and trace amounts of monoterpenes (α- and β-pinene and α-terpineol) were also identified from this crop. The fatty acid profiling by GC-MS revealed mainly oleic acid (41.3 %) followed by palmitic and linoleic acids. HPLC analysis demonstrated that the major pungent alkaloid piperine was found to be trace (0.04 %) in P. colubrinum. The LC-QTOF-MS/MS profiling of the chloroform extract of the P. colubrinum revealed the presence of non-volatile constituents including phenolic and alkaloid compounds. Ferulic acid, rosmarinic acid, salicylic acid, kaempferol-5-glucoside, 5-methoxysalicylic acid, apigenin-7-galactoside, kaempferide-3-glucoside, luteolin, kaempferol, apigenin and scutellarein-4'-methyl ether were the phenolic compounds whereas piperlonguminine was the alkaloid compound identified. Finally, the biochemical parameters of this crop were compared with that of P. nigrum, P. longum and P. chaba and average linkage cluster dendrogram revealed that P. colubrinum was biochemically distinct from other three Piper species.
Collapse
Affiliation(s)
- D Sruthi
- Division of Crop Production & PHT, ICAR-Indian Institute of Spices Research, Kozhikode-673 012, Kerala, India; Department of Biochemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - T John Zachariah
- Division of Crop Production & PHT, ICAR-Indian Institute of Spices Research, Kozhikode-673 012, Kerala, India
| |
Collapse
|
7
|
Zhou K, Xie M, Liu Y, Zheng L, Pu J, Wang C. Virtual screening and network pharmacology-based synergistic coagulation mechanism identification of multiple components contained in compound Kushen Injection against hepatocellular carcinoma. J Ayurveda Integr Med 2024; 15:101055. [PMID: 39427483 PMCID: PMC11533665 DOI: 10.1016/j.jaim.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver malignancy commonly encountered in the setting of chronic liver disease and cirrhosis. Compound Kushen Injection (CKI) has been widely used in HCC, however, the underlying mechanisms are scarce. OBJECTIVE To explore the molecular mechanisms of CKI for HCC. MATERIALS AND METHODS The chemical ingredients of CKI were reviewed from published articles and the potential targets were got from Herbal Ingredients' Targets Platform. Coagulation-related targets were from Kyoto Encyclopedia of Genes and Genomes and HCC-related targets were from Therapeutic Target Database, Gene Expression Omnibus, and The Cancer Genome Atlas. Then the CKI-Herb-Target and CKI-Herb-Target-HCC networks were built. The shared targets between CKI and HCC were used for functional enrichment through Metascape and the shared coagulation-related target was used for molecular docking and survival analysis. RESULTS A total of 23 chemical ingredients and 41 potential targets shared between CKI and HCC were obtained. The results of functional enrichment indicated that several canonical pathways of CKI mostly participated in the treatment of HCC. Furthermore, a chemical ingredient of CKI formed a stable hydrogen bond link with the ASN-189 on PLG, with a best binding energy of -4.7 kcal/mol. Finally, PLG was confirmed as the shared coagulation-related target and interrelated with the prognosis of HCC. CONCLUSION CKI probably improves HCC prognosis through PLG. Our research undoubtedly deepened the understanding of the molecular mechanism of CKI anti-HCC.
Collapse
Affiliation(s)
- Kejun Zhou
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mengyi Xie
- Hepatobiliary Research Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Liu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lei Zheng
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Juan Pu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
8
|
Zhao T, Liang Y, Zhen X, Wang H, Song L, Xing D, Li H. Analysis of Serum Exosome Metabolites Identifies Potential Biomarkers for Human Hepatocellular Carcinoma. Metabolites 2024; 14:462. [PMID: 39195558 DOI: 10.3390/metabo14080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, the clinical cure rate for primary liver cancer remains low. Effective screening and early diagnosis of hepatocellular carcinoma (HCC) remain clinical challenges. Exosomes are intimately associated with tumor development and their contents have the potential to serve as highly sensitive tumor-specific markers. A comprehensive untargeted metabolomics study was conducted using exosome samples extracted from the serum of 48 subjects (36 HCC patients and 12 healthy controls) via a commercial kit. An ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) strategy was used to identify the metabolic compounds. A total of 18 differential metabolites were identified using the non-targeted metabolomics approach of UPLC-QTOF-MS/MS. Pathway analysis revealed significant alterations in the arachidonic acid metabolism, linoleic acid metabolism, and unsaturated fatty acid metabolism pathways. ROC analysis indicated that three metabolites with AUC values exceeding 0.900 were selected as potential biomarkers: caprylic acid and linoleic acid were upregulated in the HCC group, whereas pentadecanoic acid was downregulated. Linoleic acid, caprylic acid, and pentadecanoic acid are potential biomarkers for diagnosing HCC. The significant alterations in these three metabolic pathways offer new insights into the mechanisms underlying HCC formation and progression.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China
| | - Yan Liang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaolan Zhen
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China
| | - Hong Wang
- McCombs Institute for the Early Detection and Treatment of Cancer, Houston, TX 77030, USA
| | - Li Song
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Didi Xing
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China
| | - Hui Li
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China
| |
Collapse
|
9
|
Gökçek-Saraç Ç, Çetin E, Ateş K, Özen Ş, Karakurt S. Different duration of exposure to a pulsed magnetic field can cause changes in mRNA expression of apoptotic genes in oleic acid-treated neuroblastoma cells. Int J Radiat Biol 2024; 100:1471-1480. [PMID: 39088733 DOI: 10.1080/09553002.2024.2386968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE Neuroblastoma, a prevalent childhood tumor, poses significant challenges in therapeutic interventions, especially for high-risk cases. This study aims to fill a crucial gap in our understanding of neuroblastoma treatment by investigating the potential molecular impacts of short- and long-term pulsed magnetic field exposure on the neuronal apoptosis mechanism in an in vitro model of neuroblastoma treated with oleic acid (OA). MATERIALS AND METHODS Cells were cultured and divided into six following experimental groups: (I) Nontreated group (NT); (II) OA-treated group (OA); (III) Group treated with OA after being exposed to the pulsed magnetic field for 15-min (15 min PEMF + OA); (IV) Group treated with OA after being exposed to the pulsed magnetic field for 12 h (12 h PEMF + OA); (V) Group exposed to the pulsed magnetic field for 15 min (15 min PEMF); and (VI) Group exposed to the pulsed magnetic field for 12 h (12 h PEMF). Cell viability, rates of apoptosis, and mRNA levels of key apoptotic genes (TP53, Bcl2, Bax, and Caspase-3) were assessed. RESULTS Significant reductions in cell viability were observed, particularly in the group treated with OA following long-term pulsed magnetic field exposure. Flow cytometry revealed elevated apoptosis rates, notably in the early stages of apoptosis. qRT-PCR analysis demonstrated increased expression of cleaved Caspase-3, Bax/Bcl2 ratio, and TP53 in cells treated with OA following long-term pulsed magnetic field exposure, signifying enhanced apoptotic pathways. CONCLUSIONS The findings indicate that long-term pulsed magnetic field exposure and OA treatment exhibit potential synergistic effects leading to the induction of apoptosis in SH-SY5Y cells. We have concluded that stimulations of pulsed magnetic field have the potential to serve as an adjuvant therapy for oleic acid-based treatment of neuroblastoma.
Collapse
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Department of Biomedical Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Ebru Çetin
- Department of Biomedical Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Kayhan Ateş
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Şükrü Özen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| |
Collapse
|
10
|
Slavkova M, Dimitrova D, Voycheva C, Popova T, Spassova I, Kovacheva D, Yordanov Y, Tzankova V, Tzankov B. Composite Hydrogel with Oleic Acid-Grafted Mesoporous Silica Nanoparticles for Enhanced Topical Delivery of Doxorubicin. Gels 2024; 10:356. [PMID: 38920903 PMCID: PMC11203139 DOI: 10.3390/gels10060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are inorganic nanocarriers presenting versatile properties and the possibility to deliver drug molecules via different routes of application. Their modification with lipids could diminish the burst release profile for water-soluble molecules. In the case of oleic acid (OA) as a lipid component, an improvement in skin penetration can be expected. Therefore, in the present study, aminopropyl-functionalized MSNs were modified with oleic acid through carbodiimide chemistry and were subsequently incorporated into a semisolid hydrogel for dermal delivery. Doxorubicin served as a model drug. The FT-IR and XRD analysis as well as the ninhydrin reaction showed the successful preparation of the proposed nanocarrier with a uniform particle size (352-449 nm) and negative zeta potential. Transmission electron microscopy was applied to evaluate any possible changes in morphology. High encapsulation efficiency (97.6 ± 1.8%) was achieved together with a sustained release profile over 48 h. The composite hydrogels containing the OA-modified nanoparticles were characterized by excellent physiochemical properties (pH of 6.9; occlusion factor of 53.9; spreadability of factor 2.87 and viscosity of 1486 Pa·s) for dermal application. The in vitro permeation study showed 2.35 fold improvement compared with the hydrogel containing free drug. In vitro cell studies showed that loading in OA-modified nanoparticles significantly improved doxorubicin's cytotoxic effects toward epidermoid carcinoma cells (A431). All of the results suggest that the prepared composite hydrogel has potential for dermal delivery of doxorubicin in the treatment of skin cancer.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Diana Dimitrova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Christina Voycheva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Teodora Popova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Borislav Tzankov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| |
Collapse
|
11
|
Pandit A, Kumar KD, Kumar R. In vitro degradation and antibacterial activity of bacterial cellulose deposited flax fabric reinforced with polylactic acid and polyhydroxybutyrate. Int J Biol Macromol 2024; 266:131199. [PMID: 38574917 DOI: 10.1016/j.ijbiomac.2024.131199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The objective of this study was to prepare biocomposites through the solution casting method followed by compression moulding in which bacterial cellulose (BC) deposited flax fabric (FF) produced through fermentation is coated with minimal amount of polylactic acid (PLA) and polyhydroxybutyrate (PHB). Biocomposites incorporated with 60 % of PLA or PHB (% w/w) show enhanced tensile strength. Cross-sectional morphology showed good superficial interaction of these biopolymers with fibres of FF thereby filling up the gaps present between the fibres. The tensile strength of biocomposites at 60 % PLA and 60 % PHB improved from 37.97 MPa (i.e., BC deposited FF produced in presence of honey) to 67.17 MPa and 56.26 MPa, respectively. Further, 0.25 % of nalidixic acid (NA) (% w/w) and 6 % of oleic acid (OA) (% w/w) incorporation into the biocomposites imparted prolonged antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The in vitro cytotoxicity of biocomposites was determined using L929 mouse fibroblast cells. The 3-(4,5-cime- thylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity tests showed that the PHB derived biocomposites along with antibacterial compounds in it were non-toxic. In vitro degradation of biocomposites was measured for up to 8 weeks in the mimicked physiological environment that showed a gradual rate of degradation over the period.
Collapse
Affiliation(s)
- Abhay Pandit
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, India
| | - K Dinesh Kumar
- Department of Materials Science & Engineering, Indian Institute of Technology, Patna 801106, India
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, India.
| |
Collapse
|
12
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
13
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Sarkar S, Kar A, Shaw P, DasGupta B, Keithellakpam OS, Mukherjee PK, Bhardwaj PK, Sharma N, Haldar PK, Sinha S. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia 2023; 171:105684. [PMID: 37751799 DOI: 10.1016/j.fitote.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Houttuynia cordata (Thunb.), an important medicinal plant of Northeast India, Korea, and China, is used to treat various ailments and for anticancer research. Knowing its traditional practices, we are interested in the mode-of-action of HCT on HepG2 to co-relate the traditional practice with modern drug therapeutics. UPLC-Q-ToF-Ms analysis of HCT reveals identification of 14 metabolites. Network pharmacology analysis of the 14 compounds showed interaction with 232 different targets with their potential involvement in hepatocellular carcinoma. Whole extracts impart cytotoxicity on variety of cell lines including HepG2. There was a significant morphological alteration in treated HepG2 cells due to impairment of cytoskeletal components like β and γ- tubulin. Arrest at G1-S checkpoint was clearly indicated downregulation of Cyclin D1. The root extracts actuated apoptosis in HepG2 as evident from altered mitochondrial membrane potential, Annexin V- FITC, BrdU-PI, AO/EtBr assays, and modulations of apoptotic protein expression but without ROS generation. Whole extracts caused abrogation of epithelial to mesenchymal transition with repression of Snail, N-Cadherin, Vimentin, MMP-9, and upregulation of Pan-Cadherin. Pathway analysis found GSK-3β in Wnt/β-Catenin signaling cascade to be involved through Hepatocellular carcinoma (hsa05225) pathway. The GSK-3β/β-Catenin/PDL-1 signaling was found to be inhibited with the downregulation of pathway components. This was further confirmed by application of EGF, an inducer of the GSK-3β/β-Catenin pathway that neutralized the effect of Houttuynia cordata (Thunb.) root extract on the said pathway. Network pharmacology analysis also confirms the synergy network with botanical-bioactive-target-disease which showed Kaempferol to have the highest degree of association with the said pathway.
Collapse
Affiliation(s)
- Sudipta Sarkar
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab Shaw
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Barun DasGupta
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Ojit Singh Keithellakpam
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India.
| | - Pardeep K Bhardwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Surajit Sinha
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India.
| |
Collapse
|
15
|
Deng B, Kong W, Suo H, Shen X, Newton MA, Burkett WC, Zhao Z, John C, Sun W, Zhang X, Fan Y, Hao T, Zhou C, Bae-Jump VL. Oleic Acid Exhibits Anti-Proliferative and Anti-Invasive Activities via the PTEN/AKT/mTOR Pathway in Endometrial Cancer. Cancers (Basel) 2023; 15:5407. [PMID: 38001668 PMCID: PMC10670880 DOI: 10.3390/cancers15225407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Reprogramming of fatty acid metabolism promotes cell growth and metastasis through a variety of processes that stimulate signaling molecules, energy storage, and membrane biosynthesis in endometrial cancer. Oleic acid is one of the most important monounsaturated fatty acids in the human body, which appears to have both pro- and anti-tumorigenic activities in various pre-clinical models. In this study, we evaluated the potential anti-tumor effects of oleic acid in endometrial cancer cells and the LKB1fl/flp53fl/fl mouse model of endometrial cancer. Oleic acid increased lipogenesis, inhibited cell proliferation, caused cell cycle G1 arrest, induced cellular stress and apoptosis, and suppressed invasion in endometrial cancer cells. Targeting of diacylglycerol acyltransferases 1 and 2 effectively increased the cytotoxicity of oleic acid. Moreover, oleic acid significantly increased the expression of wild-type PTEN, and knockdown of PTEN by shRNA partially reversed the anti-proliferative and anti-invasive effects of oleic acid. Inhibition of the AKT/mTOR pathway by ipatasertib effectively increased the anti-tumor activity of oleic acid in endometrial cancer cells. Oleic acid treatment (10 mg/kg, daily, oral) for four weeks significantly inhibited tumor growth by 52.1% in the LKB1fl/flp53fl/fl mice. Our findings demonstrated that oleic acid exhibited anti-tumorigenic activities, dependent on the PTEN/AKT/mTOR signaling pathway, in endometrial cancer.
Collapse
Affiliation(s)
- Boer Deng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Weimin Kong
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Hongyan Suo
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Xiaochang Shen
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Meredith A. Newton
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Wesley C. Burkett
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Ziyi Zhao
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Catherine John
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Yali Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Córdoba RP, Quesada-Granados JJ, Ramírez-Anaya JDP, Peña-Díaz J, Blanca-Herrera R, Samaniego-Sánchez C. Bioactive compounds in Spanish extra virgin olive oils: Migration and stability according to the culinary technique used. Food Res Int 2023; 172:113191. [PMID: 37689948 DOI: 10.1016/j.foodres.2023.113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Extra virgin olive oil (EVOO) is a basic food of the Mediterranean diet and an important source of bioactive compounds, especially phenolic substances. The culinary techniques to which the oil is subjected before consumption cause the migration of these compounds, hence the importance of studying their stability before and after culinary treatment. We determined the behaviour of the phenols present in EVOO and its total antioxidant capacity before and after the use of various culinary techniques such as deep frying, boiling (in a water/oil mixture (W/O) and sauteing, observing that the study parameters varied according to the variety of oil and the culinary technique used. Significant statistical differences were observed between the different varieties of EVOO according to the culinary technique used. But this was not the case with respect to polyphenol content, for which no statistically significant differences were observed among the different varieties of EVOO according to the culinary techniques employed (p > 0.05), except with the Arbequina variety (p < 0.05). With respect to the individual polyphenols - tyrosol, p-vainillin, vanillic acid, gallic acid, trans-caffeic acid, ferulic acid and luteolin - our analysis shows that although there were differences in content between raw EVOO and EVOO treated with each of the culinary techniques, these differences were not statistically significant (p > 0.05). There were significant losses of oleocanthal with the W/O boiling technique, but content increases were observed following sauteing and deep frying with respect to raw EVOO. Total antioxidant capacity presented a similar pattern in all samples, with increases after sauteing and decreases after W/O boiling and deep frying. ABTS was the most suitable technique for determining antioxidant capacity in EVOO. In short, the behaviour of the bioactive compounds in EVOO depends on the temperature and the cooking medium used.
Collapse
Affiliation(s)
- Rosario Pérez Córdoba
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Cartuja s/n, C.P. 10871 Granada, Spain.
| | - José Javier Quesada-Granados
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Cartuja s/n, C.P. 10871 Granada, Spain; Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Centro de Investigación Biomédica, Avenida del Conocimiento s/n, Parque tecnológico de Ciencias de la Salud, Universidad de Granada, 18100-Armilla, Granada, Spain.
| | - Jessica Del Pilar Ramírez-Anaya
- Department of Computational Sciences and Technological Innovation, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, Mexico.
| | - Jaime Peña-Díaz
- Member of María José Faus Dader Pharmaceutical Care Académic Center, University of Granada, Campus Cartuja s/n, C.P. 10871 Granada, Spain.
| | - Rosa Blanca-Herrera
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Cartuja s/n, C.P. 10871 Granada, Spain.
| | - Cristina Samaniego-Sánchez
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Cartuja s/n, C.P. 10871 Granada, Spain; Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Centro de Investigación Biomédica, Avenida del Conocimiento s/n, Parque tecnológico de Ciencias de la Salud, Universidad de Granada, 18100-Armilla, Granada, Spain.
| |
Collapse
|
17
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Malami I, Batako MM, Alhasan AM, Abubakar IB. Mitracarpus hirtus (L.) DC.: is a potential source for the exploitation of anticancer agents. Nat Prod Res 2023; 37:2965-2968. [PMID: 36308291 DOI: 10.1080/14786419.2022.2140340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2022]
Abstract
Mitracarpus hirtus (L.) DC. is a weed plant commonly used for the treatment of eczema. The potential of the plant to treat cancer has not been emphasized, hence the need to explore its anticancer potential. M. hirtus was extracted and subjected to petition with solvents of increasing polarity. Its cytotoxic potential was evaluated against MCF-7, HepG2, and HeLa cells using the Neutral red assay and further verified through morphological assessment and DNA fragmentation assay. Crude chloroform fraction (CCF) displayed a cytotoxic effect on all the cell lines with low IC50 concentrations ranging from 11-17.87 µg/mL. Morphological assessment of MCF-7 exposed to CCF indicates apoptotic cell death and is further confirmed by its DNA fragmentation. Our data suggest that M. hirtus is a potential source for mining anticancer agents.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Muhammad Batako
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Alhasan Muhammad Alhasan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, Kebbi, Nigeria
| |
Collapse
|
19
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
20
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Tan JQ, Zhang L, Xu HX. Garcinia oligantha: A comprehensive overview of ethnomedicine, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116130. [PMID: 36621661 DOI: 10.1016/j.jep.2022.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
22
|
Murshed M, Aljawdah HMA, Mares M, Al-Quraishy S. In Vitro: The Effects of the Anticoccidial Activities of Calotropis procera Leaf Extracts on Eimeria stiedae Oocysts Isolated from Rabbits. Molecules 2023; 28:molecules28083352. [PMID: 37110585 PMCID: PMC10141090 DOI: 10.3390/molecules28083352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatic coccidiosis is an infectious and mortal disease that causes global economic losses in rabbits. The research aimed to assess the efficacy of Calotropis procure leaf extracts on the inhibition of Eimeria stiedae oocysts and to determine the optimal dosage for suppressing the parasite's infective phase. In this experiment, oocyst samples per milliliter were tested, and 6-well plates (2 mL) of 2.5% potassium dichromate solution containing 102 non-sporulated oocysts on Calotropis procera leaf extracts were exposed after 24, 48, 72, and 96 h, and the treatments were as follows: a nontreated control, 25%, 50%, 100%, and 150% of C. procera for oocyst activities. In addition, amprolium was utilized as a reference drug. The Calotropis procera was analyzed by GC-Mass, and results showed that the botanical extract contained 9 chemical components that were able to inhibit the oocysts of E. stiedae at 100% and 150% concentrations by about 78% and 93%, respectively. In general, an increase in the incubation period and a greater dose resulted in a decrease in the inhibition rate. The results showed that C. procera has an effective ability, inhibitory potential, and protective effect on the coccidian oocyst sporulation of E. stiedae. It can be used in the disinfection and sterilization of poultry and rabbit houses to get rid of Eimeria oocysts.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hossam M A Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Mares
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Free Fatty Acids from Cow Urine DMSO Fraction Induce Cell Death in Breast Cancer Cells without Affecting Normal GMSCs. Biomedicines 2023; 11:biomedicines11030889. [PMID: 36979868 PMCID: PMC10046047 DOI: 10.3390/biomedicines11030889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Objective: The objective of this study was to explore the biological relevance of free fatty acids derived from cow urine DMSO fraction (CUDF) by employing in vitro and in silico approaches. Background: Metabolic heterogeneity at the intra- and intercellular levels contributes to the metabolic plasticity of cancer cells during drug-induced response. Free fatty acid (FFA) availability at intra- and intercellular levels is related to tumor heterogeneity at interpatient and xeno-heterogeneity levels. Methods: We collected fresh urine from healthy cows and subjected it to fractionation in DMSO using drying, vortexing, and centrifugation. Finally, the sterile filtrate of cow urine DMSO fraction (CUDF) was evaluated for antiproliferative and proapoptotic effects in MCF-7 and ZR-75-1 breast cancer cells using routine cell-based assays. Intracellular metabolites were studied with the help of a novel in-house vertical tube gel electrophoresis (VTGE) method to reveal the nature of CUDF components in MCF-7 cells. Identified intracellular FFAs were studied for their molecular interactions with targeted receptor histone deacetylase (HDAC) using molecular docking and molecular dynamics (MD) simulations. Results: CUDF showed a significant reduction in cell viability and cell death in MCF-7 and ZR-75-1 breast cancer cells. Interestingly, FFAs tetracosanedioic acid, 13Z-docosenoic acid (erucic acid), nervonic acid, 3-hydroxy-tetradecanoic acid, and 3-hydroxcapric acid were found inside the treated MCF-7 cancer cells. These FFAs, including tetracosanedioic acid, indicated a specific affinity to HDAC at their inhibitory sites, similar to trichostatin A, a known inhibitor. Conclusions: This study reports on FFAs derived from CUDF as potential antiproliferative and pro-cell death agents against breast cancer cells. MD simulations hinted at tetracosanedioic acid and other FFAs as inhibitors of HDAC that could explain the observed effects of FFAs in cancer cells.
Collapse
|
24
|
Ferreira DM, de Oliveira NM, Chéu MH, Meireles D, Lopes L, Oliveira MB, Machado J. Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:688. [PMID: 36771772 PMCID: PMC9921517 DOI: 10.3390/plants12030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Olea europaea L. folium merits further exploration of the potential of its substrates for therapeutic supplements. Quantitative and qualitative analyses were conducted on samples of Madural, Verdeal, and Cobrançosa elementary leaves and leaf sprouts (mamões) collected in the region of Valpaços, Portugal. Organic analysis assessed the moisture content, total carbohydrates, ash, protein, and fat contents, total phenolic content (TPC), vitamin E, and fatty acid (FA) profiles. Moisture content was determined through infrared hygrometry and TPC was determined by a spectrophotometric method. Concerning organic analysis, all leaf samples showed similar moisture content, though Cobrançosa's leaf sprouts and Verdeal's elementary leaves had slightly lower contents. Meanwhile, these cultivars also showed a higher TPC, α-tocopherol isomer, and fatty acid composition (FAC). FAC in all samples exhibited higher contents of PUFA and SFA than MUFA, with a predominance of linolenic and palmitic acids. Organic analyses of Cobrançosa's leaf sprouts and Verdeal's elementary leaf extracts allow for the prediction of adequate physiological properties regarding neuroinflammatory, neurobehavioral, metabolic, cardiovascular, osteo-degenerative, anti-ageing, pulmonary, and immunological defense disorders. These physiological changes observed in our preliminary in silico studies suggest an excellent nutraceutical, which should be borne in mind during severe pandemic situations.
Collapse
Affiliation(s)
- Diana Melo Ferreira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália M. de Oliveira
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- RECI—Research Unit in Education and Community Intervention, Instituto Piaget—ISEIT, 3515-776 Viseu, Portugal
| | - Diana Meireles
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Lara Lopes
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| | - Maria Beatriz Oliveira
- LAQV/REQUIMTE—Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar—ICBAS, University of Porto, 4050-313 Porto, Portugal
- Centre of Biosciences in Integrative Health—CBSin, 4250-105 Porto, Portugal
| |
Collapse
|
25
|
Machado M, Sousa S, Morais P, Miranda A, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Novel avocado oil-functionalized yogurt with anti-obesity potential: Technological and nutraceutical perspectives. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
27
|
Dehelean CA, Coricovac D, Pinzaru I, Marcovici I, Macasoi IG, Semenescu A, Lazar G, Cinta Pinzaru S, Radulov I, Alexa E, Cretu O. Rutin bioconjugates as potential nutraceutical prodrugs: An in vitro and in ovo toxicological screening. Front Pharmacol 2022; 13:1000608. [PMID: 36210849 PMCID: PMC9538480 DOI: 10.3389/fphar.2022.1000608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Rutin (RUT) is considered one the most attractive flavonoids from a therapeutic perspective due to its multispectral pharmacological activities including antiradical, anti-inflammatory, antiproliferative, and antimetastatic among others. Still, this compound presents a low bioavailability what narrows its clinical applications. To overcome this inconvenience, the current paper was focused on the synthesis, characterization, and toxicological assessment of two RUT bioconjugates obtained by enzymatic esterification with oleic acid (OA) and linoleic acid (LA)—rutin oleate (RUT-O) and rutin linoleate (RUT-L), as flavonoid precursors with improved physicochemical and biological properties. Following the enzymatic synthesis in the presence of Novozyme® 435, the two bioconjugates were obtained, their formation being confirmed by RAMAN and FT-IR spectroscopy. The in vitro and in ovo toxicological assessment of RUT bioconjugates (1–100 µM) was performed using 2D consecrated cell lines (cardiomyoblasts - H9c2(2-1), hepatocytes—HepaRG, and keratinocytes—HaCaT), 3D reconstructed human epidermis tissue (EpiDerm™), and chick chorioallantoic membranes, respectively. The results obtained were test compound, concentration—and cell-type dependent, as follows: RUT-O reduced the viability of H9c2(2-1), HepaRG, and HaCaT cells at 100 µM (to 77.53%, 83.17%, and 78.32%, respectively), and induced cell rounding and floating, as well as apoptotic-like features in the nuclei of all cell lines, whereas RUT-L exerted no signs of cytotoxicity in all cell lines in terms of cell viability, morphology, and nuclear integrity. Both RUT esters impaired the migration of HepaRG cells (at 25 µM) and lack irritative potential (at 100 µM) in vitro (tissue viability >50%) and in ovo (irritation scores of 0.70 for RUT-O, and 0.49 for RUT-L, respectively). Computational predictions revealed an increased lipophilicity, and reduced solubility, drug-likeness and drug score of RUT-O and RUT-L compared to their parent compounds—RUT, OA, and LA. In conclusion, we report a favorable toxicological profile for RUT-L, while RUT-O is dosage-limited since at high concentrations were noticed cytotoxic effects.
Collapse
Affiliation(s)
- Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- *Correspondence: Iulia Pinzaru,
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Alexandra Semenescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Geza Lazar
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- ”Ioan Ursu” Institute of the Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Isidora Radulov
- Faculty of Agriculture, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of România”, Timişoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
28
|
El Sobky SA, Aboud NK, El Assaly NM, Fawzy IO, El-Ekiaby N, Abdelaziz AI. Regulation of lipid droplet (LD) formation in hepatocytes via regulation of SREBP1c by non-coding RNAs. Front Med (Lausanne) 2022; 9:903856. [PMID: 36203751 PMCID: PMC9530594 DOI: 10.3389/fmed.2022.903856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Increased de novo lipogenesis (DNL) is one of the key factors contributing to fat accumulation and non-alcoholic fatty liver disease (NAFLD). Among the critical transcription factors (TFs) regulating DNL is mTOR and its downstream lipogenic TF, SREBP1c. In recent years, it has been established that non-coding RNAs (ncRNAs) play role in both biological processes and disease pathogenesis. Our group has previously characterized microRNAs that can target and regulate the expression of both mTOR and SREBP1c. Accordingly, this study aimed to broaden our understanding of the role of ncRNAs in regulating the mTOR/SREBP1c axis to elucidate the role of the non-coding transcriptome in DNL and lipid droplet (LD) formation. Hence, short ncRNA, miR-615-5p, and long non-coding RNA (lncRNA), H19, were chosen as they were previously proven to target mTOR by our group and in the published literature, respectively. Methodology Huh-7 cells were treated with 800 μM oleic acid (OA) to promote LD formation. Transfection of miR-615-5p mimics or H19 over-expression vectors was performed, followed by the measurement of their downstream targets, mTOR and SREBP, on the mRNA level by quantitative real-time PCR (qRT-PCR), and on the protein level by Western blot. To determine the functional impact of miR-615-5p and H19 on LD formation and triglyceride (TG) accumulation, post-transfection LDs were stained, imaged, and characterized, and TGs were extracted and quantified. Results miR-615-5p was able to reduce mTOR and SREBP1c significantly on both the mRNA and protein levels compared to control cells, while H19 caused a reduction of both targets on the protein level only. Both miR-615-5p and H19 were able to significantly reduce the LD count and total area, as well as TG levels compared to control cells. Conclusion To conclude, this study shows, for the first time, the impact of miR-615-5p and H19 on the mTOR/SREBP1c axis, and thus, their functional impact on LDs and TG accumulation. These findings might pave the way for using ncRNAs as potential therapeutic targets in the management of fatty liver.
Collapse
Affiliation(s)
| | | | - Nihal M. El Assaly
- Clinical Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Injie O. Fawzy
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed I. Abdelaziz
- School of Medicine, Newgiza University (NGU), Giza, Egypt
- *Correspondence: Ahmed I. Abdelaziz
| |
Collapse
|
29
|
Yerlikaya S, Djamgoz MB. Oleamide, a Sleep-Inducing Compound: Effects on Ion Channels and Cancer. Bioelectricity 2022. [DOI: 10.1089/bioe.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Serife Yerlikaya
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Center, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
30
|
Scheffschick A, Babel J, Sperling S, Nerusch J, Herzog N, Seehofer D, Damm G. Primary-like Human Hepatocytes Genetically Engineered to Obtain Proliferation Competence as a Capable Application for Energy Metabolism Experiments in In Vitro Oncologic Liver Models. BIOLOGY 2022; 11:biology11081195. [PMID: 36009822 PMCID: PMC9405410 DOI: 10.3390/biology11081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Fatty liver disease is an increasing health concern in Westernized countries. A fatty liver can lead to hepatocellular carcinoma (HCC), a type of liver cancer arising from hepatocytes, the major cells of the liver. How HCC may develop from the fatty liver is not known, and good cellular systems to investigate this are lacking. Recently, hepatocytes that can multiply continuously have been generated and suggested for hepatocyte research. In this study, we compared these continuously multiplying human hepatocytes to normal human hepatocytes and liver cancer cells, both within the state of fatty liver or not. We identified that these multiplying hepatocytes displayed many similarities to the liver cancer cells in terms of energy metabolism and concluded that these hepatocytes could be a pre-cancer model for liver cancer research and would be a valuable tool for HCC research. Abstract Non-alcoholic fatty liver disease (NAFLD), characterized by lipid accumulation in the liver, is the most common cause of liver diseases in Western countries. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC); however, in vitro evaluation of hepatic cancerogenesis fails due to a lack of liver models displaying a proliferation of hepatocytes. Originally designed to overcome primary human hepatocyte (PHH) shortages, upcyte hepatocytes were engineered to obtain continuous proliferation and, therefore, could be a suitable tool for HCC research. We generated upcyte hepatocytes, termed HepaFH3 cells, and compared their metabolic characteristics to HepG2 hepatoma cells and PHHs isolated from resected livers. For displaying NAFLD-related HCCs, we induced steatosis in all liver models. Lipid accumulation, lipotoxicity and energy metabolism were characterized using biochemical assays and Western blot analysis. We showed that proliferating HepaFH3 cells resemble HepG2, both showing a higher glucose uptake rate, lactate levels and metabolic rate compared to PHHs. Confluent HepaFH3 cells displayed some similarities to PHHs, including higher levels of the transaminases AST and ALT compared to proliferating HepaFH3 cells. We recommend proliferating HepaFH3 cells as a pre-malignant cellular model for HCC research, while confluent HepaFH3 cells could serve as PHH surrogates for energy metabolism studies.
Collapse
Affiliation(s)
- Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Jonas Babel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
| | - Sebastian Sperling
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Julia Nerusch
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Natalie Herzog
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-341-97-39656
| |
Collapse
|
31
|
Abdullah M, Mourad MI, Fathy M, El-Sissi A. In Vitro Study of the Potential Role of Olive Oil Oleuropein in Modulating the 5-FU Cytotoxic Efficacy against the Tongue Squamous Cell Carcinoma. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: 5-fluorouracil (5-FU) is an anticancer drug used to inhibit the proliferation of many different tumor cells. Since severe side effects are associated with this drug, its combination with different natural compounds would allow the use of a significantly lower dose of 5-FU. Oleuropein (OLEU), has been shown to have inhibitory effects on various types of cancers. AIM: The main objective of the current study was to assess the cytotoxic effect of OLEU and the chemotherapeutic drug 5-FU on Human Tongue Carcinoma Cancer Cell Line (HNO-97) and Human Normal Oral Epithelial Cell Line (OEC) either independently or combinatory effect. MATERIALS AND METHODS: 3-(4,5- dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay for cell viability, and half-maximal inhibitory concentration (IC50) was calculated. Flowcytometry for cell cycle analysis was performed. Also, in vitro scratch assay was done to assess the inhibitory effects of OLEU on the migration of cells.RESULTS: MTT assay study demonstrated that OLEU and 5-FU alone or in combinations have produced a significant inhibitory effect on both normal and cancer cell lines with a favorable impact for OLEU on cancer cell lines rather than the normal one. A significant increase in the cell inhibitory % was reported between the single and the combinations treated groups as compared to the non-treated control group. Cell cycle analysis via flowcytometry showed that OLEU had induced cell cycle arrest at G0/1 phase, decreased S phase and G2/M phase either independently or in combination for 24h and 48h when compared with a non-treated control group. A Scratch assay test showed that OLEU could induce delayed wound healing. CONCLUSIONS: The findings of the present study suggest that OLEU can exert an anti-cancer effect on HNO-97 and may have the potential for potentiation of 5-FU cytotoxic effects and reduction of its adverse effects. In addition, OLEU could inhibit cancer progression and expansion from the initial tumor.
Collapse
|
32
|
Kamdar JH, Jasani MD, Chandrashekar AB, Janila P, Pandey MK, Georrge JJ, Varshney RK, Bera SK. Does improved oleic acid content due to marker-assisted introgression of ahFAD2 mutant alleles in peanuts alter its mineral and vitamin composition? FRONTIERS IN PLANT SCIENCE 2022; 13:942617. [PMID: 35968125 PMCID: PMC9372547 DOI: 10.3389/fpls.2022.942617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Peanuts (Arachis hypogaea L.) with high oleic acid content have extended shelf life and several health benefits. Oleic, linoleic, and palmitic acid contents in peanuts are regulated by ahFAD2A and ahFAD2B mutant alleles. In the present study, ahFAD2A and ahFAD2B mutant alleles from SunOleic 95R were introgressed into two popular peanut cultivars, GG-7 and TKG19A, followed by markers-assisted selection (MAS) and backcrossing (MABC). A total of 22 MAS and three MABC derived lines were developed with increased oleic acid (78-80%) compared to those of GG 7 (40%) and TKG 19A (50%). Peanut kernel mineral and vitamin composition remained unchanged, while potassium content was altered in high oleic ingression lines. Two introgression lines, HOMS Nos. 37 and 113 had over 10% higher pooled pod yield than respective best check varieties. More than 70% recurrent parent genome recovery was observed in HOMS-37 and HOMS-113 through recombination breeding. However, the absence of recombination in the vicinity of the target locus resulted in its precise introgression along with ample background genome recovery. Selected introgression lines could be released for commercial cultivation based on potential pod yield and oleic acid content.
Collapse
Affiliation(s)
- Jignesh H. Kamdar
- ICAR-Directorate of Groundnut Research, Junagadh, India
- Department of Microbiology, RK University, Rajkot, India
| | | | | | - Pasupulati Janila
- International Crop Research Institute for Semi-Arid Tropics, Hyderabad, India
| | - Manish K. Pandey
- International Crop Research Institute for Semi-Arid Tropics, Hyderabad, India
| | - John J. Georrge
- Christ College, Rajkot, India
- Department of Bioinformatics, University of North Bengal, Siliguri, India
| | - Rajeev K. Varshney
- International Crop Research Institute for Semi-Arid Tropics, Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
33
|
Leitner N, Hlavatý J, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I. Lipid droplets and perilipins in canine osteosarcoma. Investigations on tumor tissue, 2D and 3D cell culture models. Vet Res Commun 2022; 46:1175-1193. [PMID: 35834072 DOI: 10.1007/s11259-022-09975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Lipid droplets were identified as important players in biological processes of various tumor types. With emphasis on lipid droplet-coating proteins (perilipins, PLINs), this study intended to shed light on the presence and formation of lipid droplets in canine osteosarcoma. For this purpose, canine osteosarcoma tissue samples (n = 11) were analyzed via immunohistochemistry and electron microscopy for lipid droplets and lipid droplet-coating proteins (PLINs). Additionally, we used the canine osteosarcoma cell lines D-17 and COS4288 in 2D monolayer and 3D spheroid (cultivated for 7, 14, and 21 days) in vitro models, and further analyzed the samples by means of histochemistry, immunofluorescence, molecular biological techniques (RT-qPCR, Western Blot) and electron microscopical imaging. Lipid droplets, PLIN2, and PLIN3 were detected in osteosarcoma tissue samples as well as in 2D and 3D cultivated D-17 and COS4288 cells. In spheroids, specific distribution patterns of lipid droplets and perilipins were identified, taking into consideration cell line specific zonal apportionment. Upon external lipid supplementation (oleic acid), a rise of lipid droplet amount accompanied with an increase of PLIN2 expression was observed. Detailed electron microscopical analyzes revealed that lipid droplet sizes in tumor tissue were comparable to that of 3D spheroid models. Moreover, the biggest lipid droplets were found in the central zone of the spheroids at all sampling time-points, reaching their maximum size at 21 days. Thus, the 3D spheroids can be considered as a relevant in vitro model for further studies focusing on lipid droplets biology and function in osteosarcoma.
Collapse
Affiliation(s)
- N Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - J Hlavatý
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - R Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - S Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - A Fuchs-Baumgartinger
- Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria. .,VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
34
|
Gao Y, Zhou Z, Zhang T, Xue S, Li K, Jiang J. Structure-Based Virtual Screening towards the Discovery of Novel ULK1 Inhibitors with Anti-HCC Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092627. [PMID: 35565977 PMCID: PMC9102329 DOI: 10.3390/molecules27092627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/21/2022]
Abstract
There is an urgent need to develop new effective therapies for HCC. Our previous study identified ULK1 as the potential target for HCC therapy and screened the compound XST-14 as a specific inhibitor of ULK1 to suppress HCC progression. However, the poor manufacturability of XST-14 impeded the process of its clinical translation. In this study, we first generated pharmacophore models of ULK1 based on the X-ray structure of UKL1 in complex with ligands. We then screened the Specs chemical library for potential UKL1 inhibitors. By molecular docking, we screened out the 19 compounds through structure-based virtual screening. Through CCK8 activity screening on HCC cells, we found that ZZY-19 displayed obvious cell killing effects on HCC cells. SPR assay indicated that ZZY-19 had a higher binding affinity for ULK1 than XST-14. Moreover, ZZY-19 induced the effects of anti-proliferation, anti-invasion and anti-migration in HCC cells. Mechanistically, ZZY-19 induces autophagy inhibition by reducing the expression of ULK1 on HCC cells. Especially, the combination of ZZY-19 with sorafenib synergistically suppresses the progression of HCC in vivo. Taken together, ZZY-19 was a potential candidate compound that targeted ULK1 and possessed promising anti-HCC activities by inhibiting autophagy.
Collapse
|
35
|
Abstract
Tumour growth and dissemination is largely dependent on nutrient availability. It has recently emerged that the tumour microenvironment is rich in a diverse array of lipids that increase in abundance with tumour progression and play a role in promoting tumour growth and metastasis. Here, we describe the pro-tumorigenic roles of lipid uptake, metabolism and synthesis and detail the therapeutic potential of targeting lipid metabolism in cancer. Additionally, we highlight new insights into the distinct immunosuppressive effects of lipids in the tumour microenvironment. Lipids threaten an anti-tumour environment whereby metabolic adaptation to lipid metabolism is linked to immune dysfunction. Finally, we describe the differential effects of commondietary lipids on cancer growth which may uncover a role for specific dietary regimens in association with traditional cancer therapies. Understanding the relationship between dietary lipids, tumour, and immune cells is important in the context of obesity which may reveal a possibility to harness the diet in the treatment of cancers.
Collapse
|
36
|
Kim DK, Ediriweera MK, Davaatseren M, Hyun HB, Cho SK. Antioxidant activity of banana flesh and antiproliferative effect on breast and pancreatic cancer cells. Food Sci Nutr 2022; 10:740-750. [PMID: 35311172 PMCID: PMC8907754 DOI: 10.1002/fsn3.2702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Bananas, one of the most widely consumed fruits worldwide, are a rich source of valuable phytochemicals. In this study, the antioxidant and the anticancer potential of banana flesh was investigated. Of the four kinds of banana flesh extracts, the hexane extract (HE) had the highest total polyphenol content (2.54 ± 0.60 mg GAE/g) and total flavonoid content (1.69 ± 0.34 mg RE/g), followed by the chloroform fraction, total ethanol extract, and ethanol fraction. HE was found to exert a strong radical scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (ABTS•) free radicals. According to the IC50 values in various cancer cell lines, HE was found to possess the greatest cell growth inhibitory potential in human pancreatic cancer PANC-1 cells and human triple-negative breast cancer MDA-MB-231 cells. HE induced apoptosis in PANC-1 and MDA-MB-231 cells, as evidenced by the appearance of condensation of chromatin, proteolytic activation of caspase-3 and 7, and increase in the level of the cleaved form of poly (ADP-ribose) polymerase protein. Gas chromatography mass spectrometry (GC-MS) analysis of HE identified several anticancer compounds including palmitic acid, linoleic acid, oleic acid, campesterol, stigmasterol, and γ-sitosterol, supporting the anticancer potential of HE. Our investigation provides a rationale for the use of banana flesh to minimize the risk of cancer-like diseases.
Collapse
Affiliation(s)
- Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuSouth Korea
| | - Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuSouth Korea
- Present address:
Department of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of ColomboColomboSri Lanka
| | | | - Ho Bong Hyun
- Biodiversity Research InstituteJeju TechnoparkJejuSouth Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuSouth Korea
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuSouth Korea
- Department of BiotechnologyCollege of Applied Life SciencesJeju National UniversityJejuSouth Korea
| |
Collapse
|
37
|
Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, Liu J, He G, Zheng H, Yang L, Li H, Fan Q. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis 2022; 13:132. [PMID: 35136038 PMCID: PMC8825858 DOI: 10.1038/s41419-022-04593-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyu Zheng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
38
|
Hao L, Guo Y, Peng Q, Zhang Z, Ji J, Liu Y, Xue Y, Li C, Zheng K, Shi X. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153913. [PMID: 35026515 DOI: 10.1016/j.phymed.2021.153913] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/04/2021] [Accepted: 12/24/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Anti-PD-1 was used to treat for many cancers, but the overall response rate of monoclonal antibodies blocking the inhibitory PD-1/PD-L1 was less than 20%. Lipid droplet (LD) deposition reduced chemotherapy efficacy, but whether LD deposition affects anti-PD-1 treatment and its mechanism remains unclear. Dihydroartemisinin (DHA) was FDA proved antimalarial medicine, but its working mechanism on LD deposition has not been clarified. PURPOSE This study aimed to elucidate the mechanism of DHA reducing LDs deposition and improving the efficacy of anti-PD-1. METHODS LD numbers and area were separately detected by electron microscopy and oil Red O staining. The expression of YAP1 and PLIN2 was detected by immunohistochemical staining in liver cancer tissues. Transcription and protein expression levels of YAP1 and PLIN2 in cells were detected by qRT-PCR and Western blot after DHA treated HepG2215 cells and Yap1LKO mice. RESULTS LD accumulation was found in the liver tumor cells of DEN/TOPBCOP-induced liver tumor mice with anti-PD-1 treatment. But DHA treatment or YAP1 knockdown reduced LD deposition and PLIN2 expression in HepG2215 cells. Furthermore, DHA reduced the LD deposition, PLIN2 expression and triglycerides (TG) content in the liver tumor cells of Yap1LKO mice with liver tumor. CONCLUSION Anti-PD-1 promoted LD deposition, while YAP1 knockdown/out reduced LD deposition in HCC. DHA reduced LD deposition by inhibiting YAP1, enhancing the effect of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
39
|
Assessment of Biochemical Composition and Antioxidant Properties of Algerian Date Palm (Phoenix dactylifera L.) Seed Oil. PLANTS 2022; 11:plants11030381. [PMID: 35161362 PMCID: PMC8838170 DOI: 10.3390/plants11030381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/18/2023]
Abstract
Date palm (Phoenix dactylifera L.) trees are largely cultivated across the Algerian oases; they are principal sources of remuneration and the economic basis for residents of these areas. Date palm fruits are rich sources of essential nutrients, vitamins, minerals, and dietary fibers, with many potential health benefits, yet there are few studies on the chemical composition and biological properties of date palm seed oil. In this study, we present an in-depth characterization of the biochemical composition and antioxidant properties of date palm seed oil (DPSO) produced in Algeria. DPSOs of eight Algerian cultivars, Arechti, Degla-Baida, Deglet-Nour, Ghars, Haloua, Itima, Mech-Degla, and Tentbouchet, were investigated to determine their biochemical compositions and antioxidant properties. The results highlight the potential of DPSO as an alternative food and a natural resource, thanks to several important compounds having high antioxidant capacity. In particular, fatty acids and triacylglycerol (TAGs) analyses showed that oleic (42.74–50.19%), lauric (18.40–22.2%), and myristic (8.83–10.17%) were the major fatty acids, while 1-myristoyl 2-oleoyl 3-linoleoyl glycerol, 1-linolenoyl 2-oleoyl 3-linoleoyl glycerol, 1-2-linolenoyl 3-linoleoyl glycerol, and 1-linolenoyl 2-myristoyl 3-linoleoyl glycerol were the major TAGs. Biophenols and tocopherols analyses revealed the presence of important compounds, such as catechin (22.04–24.92 mg/kg), vanillin (10.67–23.98 mg/kg), and α-tocopherol (443.59 mg/kg), at high remarkable levels. Therefore, a comparison with the literature data concerning other seed oils, including olive oil, confirms that DPSO can be considered a high-quality oil, from a biochemical and biological point of view.
Collapse
|
40
|
Bellanger D, Dziagwa C, Guimaraes C, Pinault M, Dumas JF, Brisson L. Adipocytes Promote Breast Cancer Cell Survival and Migration through Autophagy Activation. Cancers (Basel) 2021; 13:cancers13153917. [PMID: 34359819 PMCID: PMC8345416 DOI: 10.3390/cancers13153917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Breast tumours are in direct contact with the adipose tissue of the mammary gland. Although the interactions between breast cancer cells and adipocytes that secrete tumour-promoting factors are well known, the molecular mechanisms remain under investigation. The aim of our study was to understand whether and how adipocytes regulate a cell-recycling pathway in breast cancer cells—autophagy. We show that adipocytes promote autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. In this study, we have identified a new mechanism, which can link adipose tissue with breast cancer progression. Abstract White adipose tissue interacts closely with breast cancers through the secretion of soluble factors such as cytokines, growth factors or fatty acids. However, the molecular mechanisms of these interactions and their roles in cancer progression remain poorly understood. In this study, we investigated the role of fatty acids in the cooperation between adipocytes and breast cancer cells using a co-culture model. We report that adipocytes increase autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. Mechanistically, the disturbance of membrane phospholipid composition with a decrease in arachidonic acid content is responsible for autophagy activation in breast cancer cells induced by adipocytes. Therefore, autophagy might be a central cellular mechanism of white adipose tissue interactions with cancer cells and thus participate in cancer progression.
Collapse
|
41
|
Lin J. Commentary: Anti-tumor Effect of Oleic Acid in Hepatocellular Carcinoma Cell Lines via Autophagy Reduction. Front Cell Dev Biol 2021; 9:677595. [PMID: 33928094 PMCID: PMC8076892 DOI: 10.3389/fcell.2021.677595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jiong Lin
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
42
|
Bioprospecting of Natural Compounds from Brazilian Cerrado Biome Plants in Human Cervical Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22073383. [PMID: 33806119 PMCID: PMC8036847 DOI: 10.3390/ijms22073383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is the third most common in Brazilian women. The chemotherapy used for the treatment of this disease can cause many side effects; then, to overcome this problem, new treatment options are necessary. Natural compounds represent one of the most promising sources for the development of new drugs. In this study, 13 different species of 6 families from the Brazilian Cerrado vegetation biome were screened against human cervical cancer cell lines (CCC). Some of these species were also evaluated in one normal keratinocyte cell line (HaCaT). The effect of crude extracts on cell viability was evaluated by a colorimetric method (MTS assay). Extracts from Annona crassiflora, Miconia albicans, Miconia chamissois, Stryphnodendron adstringens, Tapirira guianensis, Xylopia aromatica, and Achyrocline alata showed half-maximal inhibitory concentration (IC50) values < 30 μg/mL for at least one CCC. A. crassiflora and S. adstringens extracts were selective for CCC. Mass spectrometry (Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ESI FT-ICR MS)) of A. crassiflora identified fatty acids and flavonols as secondary compounds. One of the A. crassiflora fractions, 7C24 (from chloroform partition), increased H2AX phosphorylation (suggesting DNA damage), PARP cleavage, and cell cycle arrest in CCC. Kaempferol-3-O-rhamnoside and oleic acid were bioactive molecules identified in 7C24 fraction. These findings emphasize the importance of investigating bioactive molecules from natural sources for developing new anti-cancer drugs.
Collapse
|