1
|
Köhler I, Rennau LM, Rehm A, Große J, Gonda S, Räk A, Riedel C, Wahle P. Chemogenetic activation of Gq signaling modulates dendritic development of cortical neurons in a time- and layer-specific manner. Front Cell Neurosci 2025; 19:1524470. [PMID: 40177584 PMCID: PMC11962018 DOI: 10.3389/fncel.2025.1524470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are established tools for modulating neuronal activity. Calcium-mobilizing DREADD hM3Dq has been widely used to enhance neuronal activity. hM3Dq activates the Gq protein signaling cascade and mimics the action of native Gq protein-coupled receptors such as muscarinic m1 and m3 receptors leading to calcium release from intracellular storages. Depolarization evoked by increased intracellular calcium levels is an important factor for neuronal maturation. Here, we used repetitive activation of biolistically overexpressed hM3Dq to increase the activity of individual neurons differentiating in organotypic slice cultures of rat visual cortex. HM3Dq was activated by 3 μM clozapine-N-oxide (CNO) dissolved in H2O. Transfectants expressing hM3Dq mock-stimulated with H2O served as batch-internal controls. Pyramidal cells and multipolar interneurons were analyzed after treatment from DIV 5-10, DIV 10-20, and DIV 15-20 to investigate if Gq signaling is involved in dendritic maturation. Results show that hM3Dq activation accelerated the maturation of apical dendrites of L2/3 pyramidal cells in the early, but no longer in the later time windows. In contrast, dendritic dimensions of L5/6 pyramidal cells and interneurons were not altered at DIV 10. These findings suggest a growth-promoting role of activated Gq signaling selectively for early postnatal L2/3 pyramidal cells. Unexpectedly, hM3Dq activation from DIV 10-20 reduced the dendritic complexity of L5/6 pyramidal cells and multipolar interneurons. Together, results suggest a role of Gq signaling for neuronal differentiation and support evidence that it may also limit dendritic growth.
Collapse
|
2
|
Meyer‐Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2025; 292:709-726. [PMID: 38935637 PMCID: PMC11839934 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer‐Gerards
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Graduate School for Biological SciencesUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical FacultyUniversity of CologneGermany
- Department of Dermatology and Venereology, Medical FacultyUniversity of CologneGermany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging‐associated Diseases (CECAD), Medical FacultyUniversity of CologneGermany
- Center for Molecular Medicine Cologne (CMMC), Medical FacultyUniversity of CologneGermany
- Present address:
Cell & Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
3
|
Niewoehner R, Paulding D, Leal J, Stottmann RW. Perdurant TTC21B protein in the early mouse embryo is required for proper forebrain neural progenitor proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632919. [PMID: 39868177 PMCID: PMC11761405 DOI: 10.1101/2025.01.14.632919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Primary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of Ttc21b , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a Ttc21b alien null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation. Histological and immunohistochemical analyses show an enlarged ventricular zone and reduced cortical plate thickness, accompanied by altered mitotic spindle angles, suggesting defects in symmetric versus asymmetric cell divisions. Despite low Ttc21b expression in the forebrain epithelium, early embryonic expression patterns imply that perdurant TTC21B protein may underlie these phenotypes. Progenitor proliferation kinetics were disrupted, with fewer cells re-entering the cell cycle, correlating with reduced TBR2-positive intermediate progenitors and altered neurogenesis dynamics. Neuronal processes in the cortical plate were significantly shortened, suggesting cytoskeletal defects specific to terminal differentiation stages. Our findings support a model where early Ttc21b expression in precursors destined for the forebrain is critical for sustaining later neural progenitor proliferation and differentiation. These results advance our understanding of primary cilia in cortical development and provide a framework for exploring cytoskeletal contributions to ciliopathies.
Collapse
|
4
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
5
|
Sakamoto K, Miyajima M, Nakajima M, Ogino I, Horikoshi K, Miyahara R, Kawamura K, Karagiozov K, Kamohara C, Nakamura E, Tada N, Kondo A. Loss of Dnah5 Downregulates Dync1h1 Expression, Causing Cortical Development Disorders and Congenital Hydrocephalus. Cells 2024; 13:1882. [PMID: 39594631 PMCID: PMC11593149 DOI: 10.3390/cells13221882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Dnah5 is associated with primary ciliary dyskinesia in humans. Dnah5-knockout (Dnah5-/- mice develop acute hydrocephalus shortly after birth owing to impaired ciliary motility and cerebrospinal fluid (CSF) stagnation. In contrast to chronic adult-onset hydrocephalus observed in other models, this rapid ventricular enlargement indicates additional factors beyond CSF stagnation. Herein, we investigated the contributors to rapid ventricular enlargement in congenital hydrocephalus. Dnah5-/- mice were generated using CRISPR/Cas9. The expression of dynein, N-cadherin, and nestin in the cerebral cortex was assessed using microarrays and immunostaining. Real-time PCR and Western blotting were performed for gene and protein quantification, respectively. All Dnah5-/- mice developed hydrocephalus, confirmed by electron microscopy, indicating the absence of axonemal outer dynein arms. Ventricular enlargement occurred rapidly, with a 25% reduction in the number of mature neurons in the motor cortex. Dync1h1 expression was decreased, while cytoplasmic dynein levels were 56.3% lower. Levels of nestin and N-cadherin in the lateral ventricular walls decreased by 31.7% and 33.3%, respectively. Reduced cytoplasmic dynein disrupts neurogenesis and axonal growth and reduces neuron cortical density. Hydrocephalus in Dnah5-/- mice may result from cortical maldevelopment due to cytoplasmic dynein deficiency, further exacerbating ventricular enlargement due to CSF stagnation caused by impaired motile ciliary function.
Collapse
Affiliation(s)
- Koichiro Sakamoto
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Kou Horikoshi
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Ryo Miyahara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Kostadin Karagiozov
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Chihiro Kamohara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| | - Eri Nakamura
- Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo 113-8421, Japan; (E.N.); (N.T.)
| | - Nobuhiro Tada
- Department of Genetic Analysis Model Laboratory, Juntendo University Graduate School of Medicine, Hongo Bunkyo-ku, Tokyo 113-8421, Japan; (E.N.); (N.T.)
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.N.); (I.O.); (K.H.); (R.M.); (K.K.); (K.K.); (C.K.); (A.K.)
| |
Collapse
|
6
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Dumoulin A, Wilson NH, Tucker KL, Stoeckli ET. A cell-autonomous role for primary cilium-mediated signaling in long-range commissural axon guidance. Development 2024; 151:dev202788. [PMID: 39157903 PMCID: PMC11423920 DOI: 10.1242/dev.202788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Ciliopathies are characterized by the absence or dysfunction of primary cilia. Despite the fact that cognitive impairments are a common feature of ciliopathies, how cilia dysfunction affects neuronal development has not been characterized in detail. Here, we show that primary cilium-mediated signaling is required cell-autonomously by neurons during neural circuit formation. In particular, a functional primary cilium is crucial during axonal pathfinding for the switch in responsiveness of axons at a choice point or intermediate target. Using different animal models and in vivo, ex vivo and in vitro experiments, we provide evidence for a crucial role of primary cilium-mediated signaling in long-range axon guidance. The primary cilium on the cell body of commissural neurons transduces long-range guidance signals sensed by growth cones navigating an intermediate target. In extension of our finding that Shh is required for the rostral turn of post-crossing commissural axons, we suggest a model implicating the primary cilium in Shh signaling upstream of a transcriptional change of axon guidance receptors, which in turn mediate the repulsive response to floorplate-derived Shh shown by post-crossing commissural axons.
Collapse
Affiliation(s)
- Alexandre Dumoulin
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole H Wilson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kerry L Tucker
- University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME 04005, USA
| | - Esther T Stoeckli
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Al Abir F, Chen JY. Mondrian Abstraction and Language Model Embeddings for Differential Pathway Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589093. [PMID: 38659966 PMCID: PMC11042185 DOI: 10.1101/2024.04.11.589093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this study, we introduce the Mondrian Map, an innovative visualization tool inspired by Piet Mondrian's abstract art, to address the complexities inherent in visualizing biological networks. By converting intricate biological data into a structured and intuitive format, the Mondrian Map enables clear and meaningful representations of biological pathways, facilitating a deeper understanding of molecular dynamics. Each pathway is represented by a square whose size corresponds to fold change, with color indicating the direction of regulation (up or down) and statistical significance. The spatial arrangement of pathways is derived from language model embeddings, preserving neighborhood relationships and enabling the identification of clusters of related pathways. Additionally, colored lines highlight potential crosstalk between pathways, with distinctions between short- and long-range functional interactions. In a case study of glioblastoma multiforme (GBM), the Mondrian Map effectively revealed distinct pathway patterns across patient profiles at different stages of disease progression. These insights demonstrate the tool's potential to enhance downstream bioinformatics analysis by providing a more comprehensive and visually accessible overview of pathway interactions, offering new avenues for therapeutic exploration and personalized medicine.
Collapse
Affiliation(s)
- Fuad Al Abir
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jake Y Chen
- Systems Pharmacology AI Research Center (SPARC), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
9
|
Sun H, Li K, Wang L, Zhao L, Yan C, Kong X, Liu N. Fetal agenesis of the corpus callosum: Clinical and genetic analysis in a series of 40 patients. Eur J Obstet Gynecol Reprod Biol 2024; 298:146-152. [PMID: 38756055 DOI: 10.1016/j.ejogrb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES This study aimed to explore the genetic causes of agenesis of the corpus callosum (ACC) and assess the utility of karyotype analysis, copy number variation sequencing (CNV-seq), and whole-exome sequencing (WES) to genetically diagnose fetal ACC. METHODS We retrospectively examined 40 fetuses diagnosed with ACC who underwent prenatal ultrasonography or magnetic resonance imaging between January 2019 and October 2023. Genetic tests were conducted on the fetuses using karyotype analysis or CNV-seq as the first-line diagnosis. WES was performed if aneuploid and pathogenic CNVs were excluded. RESULTS Among the 40 fetuses, 29 (72 %) had non-isolated ACC and 11 (28 %) had isolated ACC. Cerebellar dysplasia and hydrocephalus were the most common abnormal developments in the central nervous system. Twenty-eight patients underwent karyotype analysis, with a detection rate of 14 % (4/28). Twenty-six patients underwent CNV-seq; three patients were found to have pathogenic CNVs, with a detection rate of 12 % (3/26). Thirty-three fetuses with no findings of karyotype analysis or CNV-seq were subsequently tested using WES, with a detection rate of 36 % (12/33). Overall, the total diagnostic yield was 48 % (19/40), and monogenic etiology accounted for 30 % (12/40). The genetic detection rate of fetal non-isolated ACC (62 %, 18/29) was higher than that of isolated ACC (9 %, 1/11). CONCLUSION Prenatal genetic analysis of fetuses with ACC is clinically significant, with monogenic disorders being the main cause. WES may enhance the detection rate of fetuses with ACC with negative karyotype analysis or CNV-seq results.
Collapse
Affiliation(s)
- Hengqing Sun
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ke Li
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Wang
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lijuan Zhao
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenyu Yan
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangdong Kong
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Liu
- Department of Genetic and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
10
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
11
|
Zhang K, Yao H, Yang J, Jia T, Shan Q, Li D, Li M, Gan L, Wang X, Dong Y. Analysis of clinical characteristics and histopathological transcription in 40 patients afflicted by epilepsy stemming from focal cortical dysplasia. Epilepsia Open 2024; 9:981-995. [PMID: 38491953 PMCID: PMC11145614 DOI: 10.1002/epi4.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE This study aims to comprehensively analyze the clinical characteristics and identify the differentially expressed genes associated with drug-resistant epilepsy (DRE) in patients with focal cortical dysplasia (FCD). METHODS A retrospective investigation was conducted from July 2019 to June 2022, involving 40 pediatric cases of DRE linked to FCD. Subsequent follow-ups were done to assess post-surgical outcomes. Transcriptomic sequencing and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to examine differential gene expression between the FCD and control groups. RESULTS Among the 40 patients included in the study, focal to bilateral tonic-clonic seizures (13/40, 32.50%) and epileptic spasms (9/40, 22.50%) were the predominant seizure types. Magnetic resonance imaging (MRI) showed frequent involvement of the frontal (22/40, 55%) and temporal lobes (12/40, 30%). In cases with negative MRI results (13/13, 100%), positron emission tomography/computed tomography (PET-CT) scans revealed hypometabolic lesions. Fused MRI/PET-CT images demonstrated lesion reduction in 40.74% (11/27) of cases compared with PET-CT alone, while 59.26% (16/27) yielded results consistent with PET-CT findings. FCD type II was identified in 26 cases, and FCD type I in 13 cases. At the last follow-up, 38 patients were prescribed an average of 1.27 ± 1.05 anti-seizure medications (ASMs), with two patients discontinuing treatment. After a postoperative follow-up period of 23.50 months, 75% (30/40) of patients achieved Engel class I outcome. Transcriptomic sequencing and qRT-PCR analysis identified several genes primarily associated with cilia, including CFAP47, CFAP126, JHY, RSPH4A, and SPAG1. SIGNIFICANCE This study highlights focal to bilateral tonic-clonic seizures as the most common seizure type in patients with DRE due to FCD. Surgical intervention primarily targeted lesions in the frontal and temporal lobes. Patients with FCD-related DRE showed a promising prognosis for seizure control post-surgery. The identified genes, including CFAP47, CFAP126, JHY, RSPH4A, and SPAG1, could serve as potential biomarkers for FCD. PLAIN LANGUAGE SUMMARY This study aimed to comprehensively evaluate the clinical data of individuals affected by focal cortical dysplasia and analyze transcriptomic data from brain tissues. We found that focal to bilateral tonic-clonic seizures were the most prevalent seizure type in patients with drug-resistant epilepsy. In cases treated surgically, the frontal and temporal lobes were the primary sites of the lesions. Moreover, patients with focal cortical dysplasia-induced drug-resistant epilepsy exhibited a favorable prognosis for seizure control after surgery. CFAP47, CFAP126, JHY, RSPH4A, and SPAG1 have emerged as potential pathogenic genes for the development of focal cortical dysplasia.
Collapse
Affiliation(s)
- Ke Zhang
- Department of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - He Yao
- Department of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jixue Yang
- Department of Pediatric NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tianming Jia
- Department of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qiao Shan
- Department of Pediatric NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dongming Li
- Department of Pediatric NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Mengchun Li
- Department of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ling Gan
- Department of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinjun Wang
- Department of Pediatric NeurosurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yan Dong
- Department of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of NeuroscienceZhengzhouChina
| |
Collapse
|
12
|
Accogli A, Shakya S, Yang T, Insinna C, Kim SY, Bell D, Butov KR, Severino M, Niceta M, Scala M, Lee HS, Yoo T, Stauffer J, Zhao H, Fiorillo C, Pedemonte M, Diana MC, Baldassari S, Zakharova V, Shcherbina A, Rodina Y, Fagerberg C, Roos LS, Wierzba J, Dobosz A, Gerard A, Potocki L, Rosenfeld JA, Lalani SR, Scott TM, Scott D, Azamian MS, Louie R, Moore HW, Champaigne NL, Hollingsworth G, Torella A, Nigro V, Ploski R, Salpietro V, Zara F, Pizzi S, Chillemi G, Ognibene M, Cooney E, Do J, Linnemann A, Larsen MJ, Specht S, Walters KJ, Choi HJ, Choi M, Tartaglia M, Youkharibache P, Chae JH, Capra V, Park SG, Westlake CJ. Variants in the WDR44 WD40-repeat domain cause a spectrum of ciliopathy by impairing ciliogenesis initiation. Nat Commun 2024; 15:365. [PMID: 38191484 PMCID: PMC10774338 DOI: 10.1038/s41467-023-44611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre (MUHC), Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Saurabh Shakya
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826, Seoul, Republic of Korea
| | - Christine Insinna
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, 03080, Seoul, Republic of Korea
| | - David Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kirill R Butov
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Hyun Sik Lee
- School of Biological Sciences, Seoul National University, 08826, Seoul, Republic of Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, 03080, Seoul, Republic of Korea
| | - Jimmy Stauffer
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Huijie Zhao
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Child Neuropsychiatry, IRCCS Istituto G.Gaslini, DINOGMI University of Genova, Largo Gaslini 5, Genoa, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria C Diana
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Viktoria Zakharova
- National Medical Research Center for Endocrinology, Clinical data analysis department, Moscow, Russian Federation, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Laura Sønderberg Roos
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, København, Denmark
| | - Jolanta Wierzba
- Department of Pediatrics and Internal Medicine Nursing, Department of Rare Disorders, Medical University of Gdansk, Gdansk, Poland
| | - Artur Dobosz
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663, Krakow, Poland
| | - Amanda Gerard
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lorraine Potocki
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Seema R Lalani
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tiana M Scott
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Daryl Scott
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | | | | | | | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University. College London, London, WC1N 3BG, UK
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, DIBAF, University of Tuscia, Via S. Camillo de Lellis s.n.c, 01100, Viterbo, Italy
| | - Marzia Ognibene
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Erin Cooney
- Division of Medical Genetics and Metabolism, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jenny Do
- Division of Medical Genetics and Metabolism, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Anders Linnemann
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Suzanne Specht
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kylie J Walters
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Hee-Jung Choi
- School of Biological Sciences, Seoul National University, 08826, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 03080, Seoul, Republic of Korea
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Phillippe Youkharibache
- Cancer Science Data Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, 03080, Seoul, Republic of Korea
| | - Valeria Capra
- Child Neuropsychiatry, IRCCS Istituto G.Gaslini, DINOGMI University of Genova, Largo Gaslini 5, Genoa, Italy
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826, Seoul, Republic of Korea.
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
13
|
Prince S, Bonkowski E, McGraw C, SanInocencio C, Mefford HC, Carvill G, Broadbent B. A roadmap to cure CHD2-related disorders. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241283749. [PMID: 39391213 PMCID: PMC11465304 DOI: 10.1177/26330040241283749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Coalition to Cure CHD2 (CCC) is a patient advocacy group dedicated to improving the lives of those affected by CHD2-related disorders (CHD2-RD) by increasing education, building community, and accelerating research to uncover a cure. CHD2 is a chromatin remodeler that was identified in 2013 as being a genetic cause for developmental and epileptic encephalopathies. Pathogenic changes in CHD2 can cause treatment-resistant epilepsy, intellectual and developmental delays, and autism, and some individuals experience neurodevelopmental regression. There are currently no targeted therapies available for CHD2-related disorders. Haploinsufficiency of CHD2 is a causative mechanism of disease for individuals with pathogenic variants (primarily truncating) in CHD2. Recently, identification of individuals with deletion of nearby gene CHASERR, a regulator of CHD2 gene expression, has established dosage sensitivity in CHD2 and solidified the CHASERR gene as a potential therapeutic target for CHD2 levels. Through collaboration with our community and our scientific advisory board, CCC has created a Roadmap to Cure CHD2 as our guide toward a targeted cure that can benefit our community, with steps including (1) identifying and defining patients, (2) developing models of CHD2, (3) studying models of CHD2, (4) testing therapies, (5) involving patients, and (6) reaching a cure. Despite some of the challenges inherent in CHD2 research including establishing animal and cellular models that recapitulate the CHD2 clinical phenotype, identifying measurable outcomes and reliable biomarkers, or testing emerging therapeutic approaches, CCC continues to engage with our community to support ongoing research that aligns with our priorities. CCC sees new and exciting opportunities for additional research that can move our community toward our common goal of a cure that will improve the lives of individuals and their families now and in the future.
Collapse
Affiliation(s)
- Stephanie Prince
- Coalition To Cure CHD2, Dallas, TX, USA
- Department of Oncology, University Hospitals, Dorset, UK
| | - Emily Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher McGraw
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | - Christina SanInocencio
- Coalition To Cure CHD2, Dallas, TX, USA
- Department of Communication, Fairfield University, Fairfield, CT, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | - Gemma Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | | |
Collapse
|
14
|
Yeo S, Jang J, Jung HJ, Lee H, Choe Y. Primary cilia-mediated regulation of microglial secretion in Alzheimer's disease. Front Mol Biosci 2023; 10:1250335. [PMID: 37942288 PMCID: PMC10627801 DOI: 10.3389/fmolb.2023.1250335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder manifested by a gradual decline in cognitive function due to the accumulation of extracellular amyloid plaques, disruptions in neuronal substance transport, and the degeneration of neurons. In affected neurons, incomplete clearance of toxic proteins by neighboring microglia leads to irreversible brain inflammation, for which cellular signaling is poorly understood. Through single-cell transcriptomic analysis, we discovered distinct regional differences in the ability of microglia to clear damaged neurites. Specifically, microglia in the septal region of wild type mice exhibited a transcriptomic signature resembling disease-associated microglia (DAM). These lateral septum (LS)-enriched microglia were associated with dense axonal bundles originating from the hippocampus. Further transcriptomic and proteomic approaches revealed that primary cilia, small hair-like structures found on cells, played a role in the regulation of microglial secretory function. Notably, primary cilia were transiently observed in microglia, and their presence was significantly reduced in microglia from AD mice. We observed significant changes in the secretion and proteomic profiles of the secretome after inhibiting the primary cilia gene intraflagellar transport particle 88 (Ift88) in microglia. Intriguingly, inhibiting primary cilia in the septal microglia of AD mice resulted in the expansion of extracellular amyloid plaques and damage to adjacent neurites. These results indicate that DAM-like microglia are present in the LS, a critical target region for hippocampal nerve bundles, and that the primary ciliary signaling system regulates microglial secretion, affecting extracellular proteostasis. Age-related primary ciliopathy probably contributes to the selective sensitivity of microglia, thereby exacerbating AD. Targeting the primary ciliary signaling system could therefore be a viable strategy for modulating neuroimmune responses in AD treatments.
Collapse
Affiliation(s)
- Seungeun Yeo
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busan, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
15
|
Troumpoukis D, Vasileiou AR, Siskos N, Stylianopoulou E, Ypsilantis P, Skavdis G, Grigoriou ME. Characterization of the Abracl-Expressing Cell Populations in the Embryonic Mammalian Telencephalon. Biomolecules 2023; 13:1337. [PMID: 37759737 PMCID: PMC10527439 DOI: 10.3390/biom13091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Abracl (ABRA C-terminal-like protein) is a small, non-typical winged-helix protein that shares similarity with the C-terminal domain of the protein ABRA (Actin-Binding Rho-Activating protein). The role of Abracl in the cell remains elusive, although in cancer cells, it has been implicated in proliferation, migration and actin dynamics. Our previous study showed that Abracl mRNA was expressed in the dividing cells of the subpallial subventricular zone (SVZ), in the developing cortical plate (CP), and in the diencephalic SVZ; however, the molecular identities of the Abracl-expressing cell populations were not defined in that work. In this study, we use double immunofluorescence to characterize the expression of Abracl on sections of embryonic murine (E11.5-E18.5) and feline (E30/31-E33/34) telencephalon; to this end, we use a battery of well-known molecular markers of cycling (Ki67, Ascl1, Dlx2) or post-mitotic (Tubb3, Gad65/67, Lhx6 and Tbr1) cells. Our experiments show that Abracl protein has, compared to the mRNA, a broader expression domain, including, apart from proliferating cells of the subpallial and diencephalic SVZ, post-mitotic cells occupying the subpallial and pallial mantle (including the CP), as well as subpallial-derived migrating interneurons. Interestingly, in late embryonic developmental stages, Abracl was also transiently detected in major telencephalic fiber tracts.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
| | - Andreas Rafail Vasileiou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece;
| | - Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
| | - Electra Stylianopoulou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece;
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece;
| | - Maria E. Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
| |
Collapse
|
16
|
Papuc SM, Erbescu A, Glangher A, Streata I, Riza AL, Budisteanu M, Arghir A. Autistic Behavior as Novel Clinical Finding in OFD1 Syndrome. Genes (Basel) 2023; 14:genes14020327. [PMID: 36833254 PMCID: PMC9957277 DOI: 10.3390/genes14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Orofaciodigital syndrome I (OFD1-MIM #311200) is a rare ciliopathy characterized by facial dysmorphism, oral cavity, digit, and brain malformations, and cognitive deficits. OFD1 syndrome is an X-linked dominant disorder reported mostly in females. The gene responsible for this condition, OFD1 centriole and centriolar satellite protein (OFD1), is involved in primary cilia formation and several cilia-independent biological processes. The functional and structural integrity of the cilia impacts critical brain development processes, explaining the broad range of neurodevelopmental anomalies in ciliopathy patients. As several psychiatric conditions, such as autism spectrum disorders (ASD) and schizophrenia, are neurodevelopmental in nature, their connections with cilia roles are worth exploring. Moreover, several cilia genes have been associated with behavioral disorders, such as autism. We report on a three-year-old girl with a complex phenotype that includes oral malformations, severe speech delay, dysmorphic features, developmental delay, autism, and bilateral periventricular nodular heterotopia, presenting a de novo pathogenic variant in the OFD1 gene. Furthermore, to the best of our knowledge, this is the first report of autistic behavior in a female patient with OFD1 syndrome. We propose that autistic behavior should be considered a potential feature of this syndrome and that active screening for early signs of autism might prove beneficial for OFD1 syndrome patients.
Collapse
Affiliation(s)
- Sorina Mihaela Papuc
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence: ; Tel.: +40-213-194528
| | - Alina Erbescu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Adelina Glangher
- Psychiatry Research Laboratory, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Ioana Streata
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Magdalena Budisteanu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Psychiatry Research Laboratory, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
- Department of Genetics, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Aurora Arghir
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
17
|
Deleyrolle LP, Sarkisian MR. Cilia at the Crossroads of Tumor Treating Fields and Chemotherapy. Dev Neurosci 2023; 45:139-146. [PMID: 38630257 PMCID: PMC10233696 DOI: 10.1159/000529193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/10/2023] [Indexed: 04/19/2024] Open
Abstract
Glioblastoma (GBM), the most common and lethal primary brain tumor in adults, requires multi-treatment intervention which unfortunately barely shifts the needle in overall survival. The treatment options after diagnosis and surgical resection (if possible) include irradiation, temozolomide (TMZ) chemotherapy, and now tumor treating fields (TTFields). TTFields are electric fields delivered locoregionally to the head/tumor via a wearable medical device (Optune®). Overall, the concomitant treatment of TTFields and TMZ target tumor cells but spare normal cell types in the brain. Here, we examine whether primary cilia, microtubule-based "antennas" found on both normal brain cells and GBM cells, play specific roles in sensitizing tumor cells to treatment. We discuss evidence supporting GBM cilia being exploited by tumor cells to promote their growth and treatment resistance. We review how primary cilia on normal brain and GBM cells are affected by GBM treatments as monotherapy or concomitant modalities. We also focus on latest findings indicating a differential regulation of GBM ciliogenesis by TTFields and TMZ. Future studies await arrival of intracranial TTFields models to determine if GBM cilia carry a prognostic capacity.
Collapse
Affiliation(s)
- Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, Florida, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Sailer SA, Burkhalter MD, Philipp M. Cholesterol and Phosphoinositides in Cilia Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:121-142. [PMID: 36988879 DOI: 10.1007/978-3-031-21547-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cilia are evolutionarily conserved organelles that can be found on virtually every cell. They appear as hair-like structures emanating from the cellular surface either as single or as bundles of cilia. There, they sense external stimuli and translate them into intracellular signals. Motile cilia beat for the generation of locomotion of unicellular organisms or fluid flow in certain body cavities of vertebrate organisms. Defects in cilia are detrimental and account for the development of ciliopathies, one of the fastest-growing family of afflictions. In the past decade, membrane lipids, such as cholesterol and phosphoinositides, have emerged as essential elements in both the signal transduction via cilia and the building of cilia itself. Here, we summarize the current knowledge on the impact of cholesterol and phosphoinositides on cilium biology.
Collapse
Affiliation(s)
- Steffen-Alexander Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
Karalis V, Donovan KE, Sahin M. Primary Cilia Dysfunction in Neurodevelopmental Disorders beyond Ciliopathies. J Dev Biol 2022; 10:54. [PMID: 36547476 PMCID: PMC9782889 DOI: 10.3390/jdb10040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are specialized, microtubule-based structures projecting from the surface of most mammalian cells. These organelles are thought to primarily act as signaling hubs and sensors, receiving and integrating extracellular cues. Several important signaling pathways are regulated through the primary cilium including Sonic Hedgehog (Shh) and Wnt signaling. Therefore, it is no surprise that mutated genes encoding defective proteins that affect primary cilia function or structure are responsible for a group of disorders collectively termed ciliopathies. The severe neurologic abnormalities observed in several ciliopathies have prompted examination of primary cilia structure and function in other brain disorders. Recently, neuronal primary cilia defects were observed in monogenic neurodevelopmental disorders that were not traditionally considered ciliopathies. The molecular mechanisms of how these genetic mutations cause primary cilia defects and how these defects contribute to the neurologic manifestations of these disorders remain poorly understood. In this review we will discuss monogenic neurodevelopmental disorders that exhibit cilia deficits and summarize findings from studies exploring the role of primary cilia in the brain to shed light into how these deficits could contribute to neurologic abnormalities.
Collapse
Affiliation(s)
- Vasiliki Karalis
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kathleen E. Donovan
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
20
|
Galaburda AM. Animal models of developmental dyslexia. Front Neurosci 2022; 16:981801. [PMID: 36452335 PMCID: PMC9702821 DOI: 10.3389/fnins.2022.981801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
As some critics have stated, the term "developmental dyslexia" refers to a strictly human disorder, relating to a strictly human capacity - reading - so it cannot be modeled in experimental animals, much less so in lowly rodents. However, two endophenotypes associated with developmental dyslexia are eminently suitable for animal modeling: Cerebral Lateralization, as illustrated by the association between dyslexia and non-righthandedness, and Cerebrocortical Dysfunction, as illustrated by the described abnormal structural anatomy and/or physiology and functional imaging of the dyslexic cerebral cortex. This paper will provide a brief review of these two endophenotypes in human beings with developmental dyslexia and will describe the animal work done in my laboratory and that of others to try to shed light on the etiology of and neural mechanisms underlying developmental dyslexia. Some thought will also be given to future directions of the research.
Collapse
Affiliation(s)
- Albert M. Galaburda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Damizia M, Altieri L, Lavia P. Non-transport roles of nuclear import receptors: In need of the right balance. Front Cell Dev Biol 2022; 10:1041938. [PMID: 36438555 PMCID: PMC9686011 DOI: 10.3389/fcell.2022.1041938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2023] Open
Abstract
Nuclear import receptors ensure the recognition and transport of proteins across the nuclear envelope into the nucleus. In addition, as diverse processes as mitosis, post-translational modifications at mitotic exit, ciliogenesis, and phase separation, all share a common need for regulation by nuclear import receptors - particularly importin beta-1 and importin beta-2/transportin - independent on nuclear import. In particular, 1) nuclear import receptors regulate the mitotic spindle after nuclear envelope breakdown, 2) they shield cargoes from unscheduled ubiquitination, regulating their timely proteolysis; 3) they regulate ciliary factors, crucial to cell communications and tissue architecture during development; and 4) they prevent phase separation of toxic proteins aggregates in neurons. The balance of nuclear import receptors to cargoes is critical in all these processes, albeit in opposite directions: overexpression of import receptors, as often found in cancer, inhibits cargoes and impairs downstream processes, motivating the therapeutic design of specific inhibitors. On the contrary, elevated expression is beneficial in neuronal contexts, where nuclear import receptors are regarded as potential therapeutic tools in counteracting the formation of aggregates that may cause neurodegeneration. This paradox demonstrates the amplitude of nuclear import receptors-dependent functions in different contexts and adds complexity in considering their therapeutic implications.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational and Integrated Biology (CIBIO), University of Trento, Trento, Italy
| | - Ludovica Altieri
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Sapienza University of Rome, Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Sapienza University of Rome, Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
23
|
Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022; 11:cells11182895. [PMID: 36139475 PMCID: PMC9496791 DOI: 10.3390/cells11182895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.
Collapse
|
24
|
Best S, Lord J, Roche M, Watson CM, Poulter JA, Bevers RPJ, Stuckey A, Szymanska K, Ellingford JM, Carmichael J, Brittain H, Toomes C, Inglehearn C, Johnson CA, Wheway G. Molecular diagnoses in the congenital malformations caused by ciliopathies cohort of the 100,000 Genomes Project. J Med Genet 2022; 59:737-747. [PMID: 34716235 PMCID: PMC9340050 DOI: 10.1136/jmedgenet-2021-108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians. METHODS Eighty-three prescreened probands were recruited to the 100,000 Genomes Project suspected to have congenital malformations caused by ciliopathies in the following disease categories: Bardet-Biedl syndrome (n=45), Joubert syndrome (n=14) and 'Rare Multisystem Ciliopathy Disorders' (n=24). We implemented a bespoke variant filtering and analysis strategy to improve molecular diagnostic rates for these participants. RESULTS We determined a research molecular diagnosis for n=43/83 (51.8%) probands. This is 19.3% higher than previously reported by GEL (n=27/83 (32.5%)). A high proportion of diagnoses are due to variants in non-ciliopathy disease genes (n=19/43, 44.2%) which may reflect difficulties in clinical recognition of ciliopathies. n=11/83 probands (13.3%) had at least one causative variant outside the tiers 1 and 2 variant prioritisation categories (GEL's automated triaging procedure), which would not be reviewed in standard 100,000 Genomes Project diagnostic strategies. These include four structural variants and three predicted to cause non-canonical splicing defects. Two unrelated participants have biallelic likely pathogenic variants in LRRC45, a putative novel ciliopathy disease gene. CONCLUSION These data illustrate the power of linking large-scale genome sequence to phenotype information. They demonstrate the value of research collaborations in order to maximise interpretation of genomic data.
Collapse
Affiliation(s)
- Sunayna Best
- Division of Molecular Medicine, University of Leeds Leeds Institute of Medical Research at St James's, Leeds, West Yorkshire, UK
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jenny Lord
- Department of Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Christopher M Watson
- Department of Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, West Yorkshire, UK
- School of Medicine, University of Leeds, Leeds, UK
| | - James A Poulter
- Division of Molecular Medicine, University of Leeds Leeds Institute of Medical Research at St James's, Leeds, West Yorkshire, UK
| | - Roel P J Bevers
- Genomics England, Queen Mary University of London, London, UK
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, London, UK
| | - Katarzyna Szymanska
- Division of Molecular Medicine, University of Leeds Leeds Institute of Medical Research at St James's, Leeds, West Yorkshire, UK
| | - Jamie M Ellingford
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester, UK
| | - Jenny Carmichael
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Helen Brittain
- Genomics England, Queen Mary University of London, London, UK
| | - Carmel Toomes
- Division of Molecular Medicine, University of Leeds Leeds Institute of Medical Research at St James's, Leeds, West Yorkshire, UK
| | - Chris Inglehearn
- Division of Molecular Medicine, University of Leeds Leeds Institute of Medical Research at St James's, Leeds, West Yorkshire, UK
| | - Colin A Johnson
- Division of Molecular Medicine, University of Leeds Leeds Institute of Medical Research at St James's, Leeds, West Yorkshire, UK
| | - Gabrielle Wheway
- Department of Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
- Southampton University Hospitals NHS Trust, Southampton, UK
| |
Collapse
|
25
|
Schembs L, Willems A, Hasenpusch-Theil K, Cooper JD, Whiting K, Burr K, Bøstrand SMK, Selvaraj BT, Chandran S, Theil T. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep 2022; 39:110811. [PMID: 35584663 PMCID: PMC9620745 DOI: 10.1016/j.celrep.2022.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in primary cilia, cellular antennas that control multiple intracellular signaling pathways, underlie several neurodevelopmental disorders, but it remains unknown how cilia control essential steps in human brain formation. Here, we show that cilia are present on the apical surface of radial glial cells in human fetal forebrain. Interfering with cilia signaling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also show increased Sonic hedgehog (SHH) signaling, and cyclopamine treatment partially rescues this ventralization. In addition, ciliary expression of SMO, GLI2, GPR161, and several intraflagellar transport (IFT) proteins is increased. Overall, these findings establish the importance of primary cilia for dorsal and ventral patterning in human corticogenesis, indicate a tissue-specific role of INPP5E as a negative regulator of SHH signaling, and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Leah Schembs
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ariane Willems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - James D Cooper
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Katie Whiting
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Karen Burr
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sunniva M K Bøstrand
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| |
Collapse
|
26
|
Shimada IS, Kato Y. Ciliary signaling in stem cells in health and disease: Hedgehog pathway and beyond. Semin Cell Dev Biol 2022; 129:115-125. [PMID: 35466055 DOI: 10.1016/j.semcdb.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The primary cilium is a hair-like sensory compartment that protrudes from the cellular surface. The primary cilium is enriched in a variety of signaling molecules that regulate cellular activities. Stem cells have primary cilia. They reside in a specialized environment, called the stem cell niche. This niche contains a variety of secreted factors, and some of their receptors are localized in the primary cilia of stem cells. Here, we summarize the current understanding of the function of cilia in compartmentalized signaling in stem cells. We describe how ciliary signaling regulates stem cells and progenitor cells during development, tissue homeostasis and tumorigenesis. We summarize our understanding of cilia regulated signaling -primary involving the hedgehog pathway- in stem cells in diverse settings that include neuroepithelial cells, radial glia, cerebellar granule neuron precursors, hematopoietic stem cells, hair follicle stem cells, bone marrow mesenchymal stem cells and mammary gland stem cells. Overall, our review highlights a variety of roles that ciliary signaling plays in regulating stem cells throughout life.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| | - Yoichi Kato
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| |
Collapse
|
27
|
Becker T, Becker CG. Regenerative neurogenesis: the integration of developmental, physiological and immune signals. Development 2022; 149:275248. [PMID: 35502778 PMCID: PMC9124576 DOI: 10.1242/dev.199907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.
Collapse
Affiliation(s)
- Thomas Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| | - Catherina G Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| |
Collapse
|
28
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
29
|
Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes. Am Heart J 2022; 244:1-13. [PMID: 34670123 DOI: 10.1016/j.ahj.2021.10.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.
Collapse
|
30
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
31
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
32
|
Suong DNA, Imamura K, Inoue I, Kabai R, Sakamoto S, Okumura T, Kato Y, Kondo T, Yada Y, Klein WL, Watanabe A, Inoue H. Induction of inverted morphology in brain organoids by vertical-mixing bioreactors. Commun Biol 2021; 4:1213. [PMID: 34686776 PMCID: PMC8536773 DOI: 10.1038/s42003-021-02719-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Organoid technology provides an opportunity to generate brain-like structures by recapitulating developmental steps in the manner of self-organization. Here we examined the vertical-mixing effect on brain organoid structures using bioreactors and established inverted brain organoids. The organoids generated by vertical mixing showed neurons that migrated from the outer periphery to the inner core of organoids, in contrast to orbital mixing. Computational analysis of flow dynamics clarified that, by comparison with orbital mixing, vertical mixing maintained the high turbulent energy around organoids, and continuously kept inter-organoid distances by dispersing and adding uniform rheological force on organoids. To uncover the mechanisms of the inverted structure, we investigated the direction of primary cilia, a cellular mechanosensor. Primary cilia of neural progenitors by vertical mixing were aligned in a multidirectional manner, and those by orbital mixing in a bidirectional manner. Single-cell RNA sequencing revealed that neurons of inverted brain organoids presented a GABAergic character of the ventral forebrain. These results suggest that controlling fluid dynamics by biomechanical engineering can direct stem cell differentiation of brain organoids, and that inverted brain organoids will be applicable for studying human brain development and disorders in the future. Dang Ngoc Anh Suong et al find that vertical mixing generates iPSC-derived brain organoids displaying an inverted structure with neurons localising at the centre and neural progenitors at the outside. This study illustrates the influence of fluid mechanics relevant to the direction of primary cilia on stem cell differentiation.
Collapse
Affiliation(s)
- Dang Ngoc Anh Suong
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Ikuyo Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Ryotaro Kabai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE Chemical Equipment Manufacturing Ltd., Saitama, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yuichiro Yada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Akira Watanabe
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan. .,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan. .,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan. .,Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
33
|
Loo CKC, Pearen MA, Ramm GA. The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. Int J Mol Sci 2021; 22:ijms22189854. [PMID: 34576017 PMCID: PMC8468456 DOI: 10.3390/ijms22189854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.
Collapse
Affiliation(s)
- Christine K. C. Loo
- South Eastern Area Laboratory Services, Department of Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-93829015
| | - Michael A. Pearen
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|