1
|
Vraila M, Asp E, Melo FR, Grujic M, Rollman O, Pejler G, Lampinen M. Monensin induces secretory granule-mediated cell death in eosinophils. J Allergy Clin Immunol 2023; 152:1312-1320.e3. [PMID: 37536509 DOI: 10.1016/j.jaci.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Eosinophils contribute to the pathology of several types of disorders, in particular of allergic nature, and strategies to limit their actions are therefore warranted. OBJECTIVE We sought to evaluate the possibility of targeting the acidic, lysosome-like eosinophil granules as a potential means of inducing eosinophil cell death. METHODS To this end, we used monensin, an ionophoric drug that has previously been shown to permeabilize the secretory granules of mast cells, thereby inducing cell death. RESULTS Our findings reveal that monensin induces cell death in human eosinophils, whereas neutrophils were less affected. Blockade of granule acidification reduced the effect of monensin on the eosinophils, demonstrating that granule acidity is an important factor in the mechanism of cell death. Furthermore, monensin caused an elevation of the granule pH, which was accompanied by a decrease of the cytosolic pH, hence indicating that monensin caused leakage of acidic contents from the granules into the cytosol. In agreement with a granule-targeting mechanism, transmission electron microscopy analysis revealed that monensin caused extensive morphological alterations of the eosinophil granules, as manifested by a marked loss of electron density. Eosinophil cell death in response to monensin was caspase-independent, but dependent on granzyme B, a pro-apoptotic serine protease known to be expressed by eosinophils. CONCLUSIONS We conclude that monensin causes cell death of human eosinophils through a granule-mediated mechanism dependent on granzyme B.
Collapse
Affiliation(s)
- Marianthi Vraila
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elin Asp
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ola Rollman
- Department of Medical Sciences, Dermatology and Venereology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Lampinen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Dermatology and Venereology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Wu T, Yan S, Yeh YW, Fang Y, Xiang Z. FcγR-dependent apoptosis regulates tissue persistence of mucosal and connective tissue mast cells. Eur J Immunol 2023; 53:e2250221. [PMID: 37137469 DOI: 10.1002/eji.202250221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Rodent mast cells can be divided into two major subtypes: the mucosal mast cell (MMC) and the connective tissue mast cell (CTMC). A decade-old observation revealed a longer lifespan for CTMC compared with MMC. The precise mechanisms underlying such differential tissue persistence of mast cell subsets have not been described. In this study, we have discovered that mast cells expressing only one receptor, either FcγRIIB or FcγRIIIA, underwent caspase-independent apoptosis in response to IgG immune complex treatment. Lower frequencies of CTMC in mice that lacked either FcγRIIB or FcγRIIIA compared with WT mice were recorded, especially in aged mice. We proposed that this paradigm of FcγR-mediated mast cell apoptosis could account for the more robust persistence of CTMC, which express both FcγRIIB and FcγRIIIA, than MMC, which express only FcγRIIB. Importantly, we reproduced these results using a mast cell engraftment model, which ruled out possible confounding effects of mast cell recruitment or FcγR expression by other cells on mast cell number regulation. In conclusion, our work has uncovered an FcγR-dependent mast cell number regulation paradigm that might provide a mechanistic explanation for the long-observed differential mast cell subset persistence in tissues.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Shirong Yan
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yu Fang
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Phair I, Sumoreeah M, Scott N, Spinelli L, Arthur J. IL-33 induces granzyme C expression in murine mast cells via an MSK1/2-CREB-dependent pathway. Biosci Rep 2022; 42:BSR20221165. [PMID: 36342273 PMCID: PMC9727205 DOI: 10.1042/bsr20221165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.
Collapse
Affiliation(s)
- Iain R. Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Megan C. Sumoreeah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Niamh Scott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
4
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
5
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|