1
|
Lucas SAM, Franco E, Scanga HL, Clark NL, Nischal KK. Congenital Aphakia Associated With a GJA8 Pathogenic Variant: A Case Report. Clin Case Rep 2025; 13:e70286. [PMID: 40330260 PMCID: PMC12053145 DOI: 10.1002/ccr3.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 05/08/2025] Open
Abstract
Congenital aphakia is a rare eye condition in which the lens fails to form properly. It is typically caused by pathogenic variants within the FOXE3 or HCCS genes; however, it can also be associated with GJA8 pathogenic variants. GJA8 should be included in the genetic testing of patients with this condition.
Collapse
Affiliation(s)
| | - Elena Franco
- Division of Pediatric Ophthalmology and StrabismusUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Hannah L. Scanga
- Division of Pediatric Ophthalmology and StrabismusUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Nathan L. Clark
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ken K. Nischal
- Division of Pediatric Ophthalmology and StrabismusUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Gwack J, Kim N, Park J. Improving the Yield of Genetic Diagnosis through Additional Genetic Panel Testing in Hereditary Ophthalmic Diseases. Curr Issues Mol Biol 2024; 46:5010-5022. [PMID: 38785568 PMCID: PMC11119902 DOI: 10.3390/cimb46050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.
Collapse
Affiliation(s)
- Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
| | - Namsu Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea
| |
Collapse
|
4
|
Clinical and Histopathologic Characteristics and Template of the TGFBI p.(His626Arg) Missense Variant Lattice Corneal Dystrophy. Cornea 2023:00003226-990000000-00241. [PMID: 36796020 DOI: 10.1097/ico.0000000000003247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/31/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of this study was to define, following the IC3D template format, the clinical and histopathologic phenotype of the p.(His626Arg) missense variant lattice corneal dystrophy (LCDV-H626R), the most common variant lattice dystrophy, and to record long-term outcome of corneal transplantation in this dystrophy. METHODS A database search and a meta-analysis of published data on LCDV-H626R were conducted. A patient diagnosed with LCDV-H626R who underwent bilateral lamellar keratoplasty followed by rekeratoplasty of 1 eye is described, including histopathologic examination of the 3 keratoplasty specimens. RESULTS One hundred forty-five patients from at least 61 families and 11 countries diagnosed with LCDV-H626R were found. This dystrophy is characterized by recurrent erosions, asymmetric progression, and thick lattice lines that extend to corneal periphery. The median age is 37 (range, 25-59) years at the onset of symptoms, 45 (range, 26-62) years at the time of diagnosis, and 50 (range, 41-78) years at the time of the first keratoplasty, suggesting a median interval from the first symptoms to diagnosis and to keratoplasty of 7 and 12 years, respectively. Clinically unaffected carriers have been of age 6 to 45 years. Central anterior stromal haze and centrally thick, peripherally thinner branching lattice lines in the anterior to midstroma of the cornea were noted preoperatively. Histopathology of the host anterior corneal lamella showed a subepithelial fibrous pannus, a destroyed Bowman layer, and amyloid deposits extending to the deep stroma. In the rekeratoplasty specimen, amyloid localized to scarring along the Bowman membrane and to the margins of the graft. CONCLUSIONS The IC3D-type template for LCDV-H626R should help diagnose and manage variant carriers. The histopathologic spectrum of findings is broader and more nuanced than what has been reported.
Collapse
|
5
|
Li W, Jiang XS, Han DM, Gao JY, Yang ZT, Jiang L, Zhang Q, Zhang SH, Gao Y, Wu JH, Li JK. Genetic Characteristics and Variation Spectrum of USH2A-Related Retinitis Pigmentosa and Usher Syndrome. Front Genet 2022; 13:900548. [PMID: 36110214 PMCID: PMC9468824 DOI: 10.3389/fgene.2022.900548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes: We aimed to characterize the USH2A genotypic spectrum in a Chinese cohort and provide a detailed genetic profile for Chinese patients with USH2A-IRD.Methods: We designed a retrospective study wherein a total of 1,334 patients diagnosed with IRD were included as a study cohort, namely 1,278 RP and 56 USH patients, as well as other types of IEDs patients and healthy family members as a control cohort. The genotype-phenotype correlation of all participants with USH2A variant was evaluated.Results: Etiological mutations in USH2A, the most common cause of RP and USH, were found in 16.34% (n = 218) genetically solved IRD patients, with prevalences of 14.87% (190/1,278) and 50% (28/56). After bioinformatics and QC processing, 768 distinct USH2A variants were detected in all participants, including 136 disease-causing mutations present in 665 alleles, distributed in 5.81% of all participants. Of these 136 mutations, 43 were novel, nine were founder mutations, and two hot spot mutations with allele count ≥10. Furthermore, 38.5% (84/218) of genetically solved USH2A-IRD patients were caused by at least one of both c.2802T>G and c.8559–2 A>G mutations, and 36.9% and 69.6% of the alleles in the RP and USH groups were truncating, respectively.Conclusion: USH2A-related East Asian-specific founder and hot spot mutations were the major causes for Chinese RP and USH patients. Our study systematically delineated the genotype spectrum of USH2A-IRD, enabled accurate genetic diagnosis, and provided East Asian and other ethnicities with baseline data of a Chinese origin, which would better serve genetic counseling and therapeutic targets selection.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People’s Hospital, Yantai, China
| | - Qian Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Wei Li, ; Ya Gao, ; Ji-Hong Wu, ; Jian-Kang Li,
| |
Collapse
|
6
|
Qu N, Li W, Han DM, Gao JY, Yang ZT, Jiang L, Liu TB, Chen YX, Jiang XS, Zhou L, Wu JH, Huang X. Mutation spectrum in a cohort with familial exudative vitreoretinopathy. Mol Genet Genomic Med 2022; 10:e2021. [PMID: 35876299 PMCID: PMC9482396 DOI: 10.1002/mgg3.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To expand the mutation spectrum of patients with familial exudative vitreoretinopathy (FEVR) disease. Participants 74 probands (53 families and 21 sporadic probands) with familial exudative vitreoretinopathy (FEVR) disease and their available family members (n = 188) were recruited for sequencing. Methods Panel‐based targeted screening was performed on all subjects. Before sanger sequencing, variants of LRP5, NDP, FZD4, TSPAN12, ZNF408, KIF11, RCBTB1, JAG1, and CTNNA1 genes were verified by a series of bioinformatics tools and genotype–phenotype co‐segregation analysis. Results 40.54% (30/74) of the probands were sighted to possess at least one etiological mutation of the nine FEVR‐causative genes. The etiological mutation detection rate was 37.74% (20/53) in family‐attainable probands while 47.62% (10/21) in sporadic cases. The diagnosis rate of patients in the early‐onset subgroup (≤5 years old, 45.4%) is higher than that of the children or adolescence‐onset subgroup (6–16 years old, 42.1%) and the late‐onset subgroup (≥17 years old, 39.4%). A total of 36 etiological mutations were identified in this study, comprising 26 novel mutations and 10 reported mutations. LRP5 was the most prevalent mutant gene among the 36 mutation types with a percentage of 41.67% (15/36). Followed by FZD4 (10/36, 27.78%), TSPAN12 (5/36, 13.89%), NDP (4/36, 11.11%), KIF11 (1/36, 2.78%), and RCBTB1 (1/36, 2.78%). Among these mutations, 63.89% (23/36) were missense mutations, 25.00% (9/36) were frameshift mutations, 5.56% (2/36) were splicing mutations, 5.56% (2/36) were nonsense mutations. Moreover, the clinical pathogenicity of these variants was defined according to American College of Medical Genetics (ACMG) and genomics guidelines: 41.67% (15/36) were likely pathogenic variants, 27.78% (10/36) pathogenic variants, 30.55% (11/36) variants of uncertain significance. No etiological mutations discovered in the ZNF408, JAG1, and CTNNA1 genes in this FEVR cohort. Conclusions We systematically screened nine FEVR disease‐associated genes in a cohort of 74 Chinese probands with FEVR disease. With a detection rate of 40.54%, 36 etiological mutations of six genes were authenticated in 30 probands, including 26 novel mutations and 10 reported mutations. The most prevalent mutated gene is LRP5, followed by FZD4, TSPAN12, NDP, KIF11, and RCBTB1. In total, a de novo mutation was confirmed. Our study significantly clarified the mutation spectrum of variants bounded up to FEVR disease.
Collapse
Affiliation(s)
- Ning Qu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Tian-Bin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Xian Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ji-Hong Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|