1
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Song S, Jia C, Li C, Ma Y. The causal association between thyroid disease and gout: A Mendelian randomization study. Medicine (Baltimore) 2023; 102:e35817. [PMID: 37932979 PMCID: PMC10627627 DOI: 10.1097/md.0000000000035817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Observational studies have reported some associations between thyroid disease and gout, but the causal relationship between the 2 is not clear. We used Mendelian randomization (MR) Analysis to investigate the causal association between some thyroid diseases (autoimmune hypothyroidism, autoimmune hyperthyroidism, thyroid nodules, and thyroid cancer) and gout. GWAS data were used for analysis. The exposure factors were autoimmune hypothyroidism, autoimmune hyperthyroidism, thyroid nodules and thyroid cancer, and the outcome variables were gout. IVW, MR-Egger, Weighted median and Weighted mode were used for MR analysis. Cochran Q test MR-PRESSO and MR-Egger intercept analysis were used to detect heterogeneity and multi directivity. Autoimmune hypothyroidism has a causal effect on gout, IVW results show (OR = 1.13, 95% CI = 1.03-1.21, PFDR = 0.0336); Autoimmune hyperthyroidism has a causal effect on gout, IVW results show (OR = 1.07, 95% CI = 1.01-1.12, PFDR = 0.0314); Thyroid cancer has no causal effect on gout, IVW results show (OR = 1.03, 95% CI = 0.98-1.09, PFDR = 0.297); Thyroid nodules has no causal effect on gout, IVW results show (OR = 1.03, 95% CI = 0.98-1.08, PFDR = 0.225); Reverse MR Studies show that gout have no causal effect on the above thyroid diseases. Autoimmune hypothyroidism and autoimmune hyperthyroidism increase the risk of gout.
Collapse
Affiliation(s)
- Shuai Song
- Department of Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Congcong Jia
- Department of Nephrology, Shandong First Medical University Affiliated Occupational Disease Hospital, Jinan, Shandong, China
| | - ChunJing Li
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxia Ma
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Alexandrou AT, Duan Y, Xu S, Tepper C, Fan M, Tang J, Berg J, Basheer W, Valicenti T, Wilson PF, Coleman MA, Vaughan AT, Fu L, Grdina DJ, Murley J, Wang A, Woloschak G, Li JJ. PERIOD 2 regulates low-dose radioprotection via PER2/pGSK3β/β-catenin/Per2 loop. iScience 2022; 25:105546. [PMID: 36465103 PMCID: PMC9708791 DOI: 10.1016/j.isci.2022.105546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
During evolution, humans are acclimatized to the stresses of natural radiation and circadian rhythmicity. Radiosensitivity of mammalian cells varies in the circadian period and adaptive radioprotection can be induced by pre-exposure to low-level radiation (LDR). It is unclear, however, if clock proteins participate in signaling LDR radioprotection. Herein, we demonstrate that radiosensitivity is increased in mice with the deficient Period 2 gene (Per2def) due to impaired DNA repair and mitochondrial function in progenitor bone marrow hematopoietic stem cells and monocytes. Per2 induction and radioprotection are also identified in LDR-treated Per2wt mouse cells and in human skin (HK18) and breast (MCF-10A) epithelial cells. LDR-boosted PER2 interacts with pGSK3β(S9) which activates β-catenin and the LEF/TCF mediated gene transcription including Per2 and genes involved in DNA repair and mitochondrial functions. This study demonstrates that PER2 plays an active role in LDR adaptive radioprotection via PER2/pGSK3β/β-catenin/Per2 loop, a potential target for protecting normal cells from radiation injury.
Collapse
Affiliation(s)
- Aris T. Alexandrou
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
- Department of Natural and Quantitative Sciences, Holy Cross College, Notre Dame, IN 46556, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Shanxiu Xu
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Clifford Tepper
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Ming Fan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Jason Tang
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Jonathan Berg
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Wassim Basheer
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Tyler Valicenti
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Paul F. Wilson
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Matthew A. Coleman
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Andrew T. Vaughan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Loning Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David J. Grdina
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jefferey Murley
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60637, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
- NCI-designated Comprehensive Cancer Center, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Xiong G, Feng Y, Yi X, Zhang X, Li X, Yang L, Yi Z, Sai B, Yang Z, Zhang Q, Kuang Y, Zhu Y. NRF2-directed PRPS1 upregulation to promote the progression and metastasis of melanoma. Front Immunol 2022; 13:989263. [PMID: 36203561 PMCID: PMC9530353 DOI: 10.3389/fimmu.2022.989263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the de novo purine nucleotide synthesis pathway and is essential for cell development. However, the effect of PRPS1 on melanoma proliferation and metastasis remains unclear. This study aimed to investigate the regulatory mechanism of PRPS1 in the malignant progression of melanoma. Here, we found PRPS1 was upregulated in melanoma and melanoma cells. In addition, our data indicated that PRPS1 could promote the proliferation and migration and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream transcription factor of PRPS1 that drive malignant progression of melanoma.
Collapse
Affiliation(s)
- Guohang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaoyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yuechun Zhu, ; Yingmin Kuang,
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- *Correspondence: Yuechun Zhu, ; Yingmin Kuang,
| |
Collapse
|
5
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|