1
|
Abdellatif AAH, Bouazzaoui A, Tawfeek HM, Younis MA. MCT4 knockdown by tumor microenvironment-responsive nanoparticles remodels the cytokine profile and eradicates aggressive breast cancer cells. Colloids Surf B Biointerfaces 2024; 238:113930. [PMID: 38692174 DOI: 10.1016/j.colsurfb.2024.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Internal Medicine III (Haematology and Internal Oncology), University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Yu T, Liu Z, Tao Q, Xu X, Li X, Li Y, Chen M, Liu R, Chen D, Wu M, Yu J. Targeting tumor-intrinsic SLC16A3 to enhance anti-PD-1 efficacy via tumor immune microenvironment reprogramming. Cancer Lett 2024; 589:216824. [PMID: 38522774 DOI: 10.1016/j.canlet.2024.216824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Immunotherapy, especially immune checkpoint inhibitors, has revolutionized clinical practice within the last decade. However, primary and secondary resistance to immunotherapy is common in patients with diverse types of cancer. It is well-acknowledged that tumor cells can facilitate the formation of immunosuppressive microenvironments via metabolism reprogramming, and lactic acid, the metabolite of glycolysis, is a significant contributor. SLC16A3 (also named as MCT4) is a transporter mediating lactic acid efflux. In this study, we investigated the role of glycolysis in immunotherapy resistance and aimed to improve the immunotherapy effects via Slc16a3 inhibition. Bioinformatical analysis revealed that the expression of glycolysis-related genes correlated with less CD8+ T cell infiltration and increased myeloid-derived suppressor cells (MDSC) enrichment. We found that high glycolytic activity in tumor cells adversely affected the antitumor immune responses and efficacy of immunotherapy and radiotherapy. As the transporter of lactic acid, SLC16A3 is highly expressed in glycolytic B16-F10 (RRID: CVCL_0159) cells, as well as human non-small cell lung carcinoma. We validated that Slc16a3 expression in tumor cells negatively correlated with anti-PD-1 efficiency. Overexpression of Slc16a3 in tumor cells promoted lactic acid production and efflux, and reduced tumor response to anti-PD-1 inhibitors by inhibiting CD8+ T cell function. Genetic and pharmacological inhibition of Slc16a3 dramatically reduced the glycolytic activity and lactic acid production in tumor cells, and ameliorated the immunosuppressive tumor microenvironments (TMEs), leading to boosted antitumor effects via anti-PD-1 blockade. Our study therefore demonstrates that tumor cell-intrinsic SLC16A3 may be a potential target to reverse tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Zhaoyun Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Qingxu Tao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Xin Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Xinyang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, PR China
| | - Yang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Minxin Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Rufei Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Guo QK, Yang HS, Shan SC, Chang DD, Qiu LJ, Luo HH, Li HP, Ke ZF, Zhu Y. A radiomics nomogram prediction for survival of patients with "driver gene-negative" lung adenocarcinomas (LUAD). LA RADIOLOGIA MEDICA 2023; 128:714-725. [PMID: 37219740 PMCID: PMC10264479 DOI: 10.1007/s11547-023-01643-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND To study the role of computed tomography (CT)-derived radiomics features and clinical characteristics on the prognosis of "driver gene-negative" lung adenocarcinoma (LUAD) and to explore the potential molecular biological which may be helpful for patients' individual postoperative care. METHODS A total of 180 patients with stage I-III "driver gene-negative" LUAD in the First Affiliated Hospital of Sun Yat-Sen University from September 2003 to June 2015 were retrospectively collected. The Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model was used to screen radiomics features and calculated the Rad-score. The prediction performance of the nomogram model based on radiomics features and clinical characteristics was validated and then assessed with respect to calibration. Gene set enrichment analysis (GSEA) was used to explore the relevant biological pathways. RESULTS The radiomics and the clinicopathological characteristics were combined to construct a nomogram resulted in better performance for the estimation of OS (C-index: 0.815; 95% confidence interval [CI]: 0.756-0.874) than the clinicopathological nomogram (C-index: 0.765; 95% CI: 0.692-0.837). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics nomogram outperformed the traditional staging system and the clinicopathological nomogram. The clinical prognostic risk score of each patient was calculated based on the radiomics nomogram and divided by X-tile into high-risk (> 65.28) and low-risk (≤ 65.28) groups. GSEA results showed that the low-risk score group was directly related to amino acid metabolism, and the high-risk score group was related to immune and metabolism pathways. CONCLUSIONS The radiomics nomogram was promising to predict the prognosis of patients with "driver gene-negative" LUAD. The metabolism and immune-related pathways may provide new treatment orientation for this genetically unique subset of patients, which may serve as a potential tool to guide individual postoperative care for those patients.
Collapse
Affiliation(s)
- Qi-Kun Guo
- Department of Oncology, The Affiliated He Xian Memorial Hospital of Southern Medical University, Guangzhou, 510080, Province Guangdong, People's Republic of China
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Hao-Shuai Yang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Shi-Chao Shan
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Dan-Dan Chang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Li-Jie Qiu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Hong-He Luo
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - He-Ping Li
- Department of Medical Oncology of the Eastern Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
- Institution of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Ren XD, Su N, Sun XG, Li WM, Li J, Li BW, Li RX, Lv J, Xu QY, Kong WL, Huang Q. Advances in liquid biopsy-based markers in NSCLC. Adv Clin Chem 2023; 114:109-150. [PMID: 37268331 DOI: 10.1016/bs.acc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jing Lv
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qian-Ying Xu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei-Long Kong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
5
|
Li J, Wu Z, Chen G, Wang X, Zhu X, Zhang Y, Zhang R, Wu W, Zhu Y, Ma L, Yu H. Formosanin C inhibits non-small-cell lung cancer progression by blocking MCT4/CD147-mediated lactate export. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154618. [PMID: 36610137 DOI: 10.1016/j.phymed.2022.154618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tumor cells reprogram their metabolic network to maintain their uncontrolled proliferation, metastasis, and resistance to cancer therapy. Treatments targeting abnormal cellular metabolism may have promising therapeutic effects. Formosanin C (FC), a diosgenin derived from the rhizoma of Paris polyphylla var. yunnanensis, has shown potent anti-cancer activities against various cancer types. However, the effect of FC on cancer metabolism remains to be elucidated. PURPOSE In this research, we aimed to elucidate FC's effect and potential mechanisms on metabolism in lung cancer. METHODS Colony formation, transwell cell migration, and apoptosis were detected in multiple NSCLC cell lines to assess the cytotoxicity of FC. 1H NMR metabolomics approach was applied to screen the differential metabolites in H1299 cells and the culture medium. Western blotting, flow cytometry, and other molecular biological techniques were performed to verify the latent mechanism involved in metabolites. An allograft tumor model was employed to investigate the anti-tumor effects of FC in vivo. RESULTS FC significantly inhibited monoclonal formation and migration and induced cell cycle arrest and apoptosis in NSCLC cells. FC altered the abundances of 12 metabolites in lung cancer cells and 3 metabolites in the medium. These differential metabolites are primarily involved in glycolysis, citric acid cycle, and glutathione pathways. Notably, there was a remarkable increase in intracellular lactate and a reduction in extracellular lactate after FC treatment. Mechanically, FC downregulated the expression of MCT4 and CD147, blocking the export of lactate. Furthermore, FC also evoked mitochondrial dysfunction coupled with excessive oxidative stress, decreased mitochondrial membrane potential, ATP production reduction, glutathione depletion, and Ca2+ overload. Moreover, FC suppressed tumor progression in vivo with reduced protein levels of the MCT4 and CD147 in tumor tissues. CONCLUSION FC inhibits lung cancer growth by the novel mechanism in which MCT4/CD147-mediated inhibition of lactate transport and disruption of mitochondrial functions are involved.
Collapse
Affiliation(s)
- Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Zongjin Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room I01-119, I building, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
6
|
Zheng S, Liu T, Li L, Liu Q, Yang L, Zhang Q, Lu X. Tumor-infiltrating lymphocyte signature in epithelial and stromal compartments of an esophageal squamous cell carcinoma acidic microenvironment mediated by MCT4. Pathol Res Pract 2022; 236:153954. [PMID: 35667197 DOI: 10.1016/j.prp.2022.153954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022]
Abstract
Tumor-infiltrating lymphocytes (TILs), including but not limited to neutrophils, M2 macrophages, cytotoxic CD8 T cells and dendritic cells, will play a role in the acidic tumor microenvironment mediated by monocarboxylate transporter 4 (MCT4) in esophageal squamous cell carcinoma (ESCC). However, the roles they play and their significance in ESCC remain less clear. To understand the clinicopathological and prognostic significance of neutrophils, M2 macrophages, CD8 T cells and dendritic cells in the tumor acidic microenvironment mediated by MCT4, we investigated the distribution of these TILs in the epithelial and stromal compartments of ESCC by means of multiplexed immunohistochemistry on a tissue microarray containing 87 paired dots of ESCC and its adjacent normal tissue (ANT) and an additional 6 cases of unpaired ESCC dots. The density of cells stained with MCT4 in the epithelium was significantly associated with overall survival. Dendritic cells stained with S100 in epithelial compartmentalization were found to markedly correlate with clinical stage and tumor invasion depth. No other significant association could be identified in terms of prognostic and clinicopathological significance. The potential correlation between the number of cells stained with MCT4 versus the number of TILs was also explored, showing that only in epithelial cells were there significant and positive correlations identified between the number of cells stained with MCT4 versus the number of neutrophils stained with CD15, M2 macrophages stained with CD163 and CD8 T cells stained by CD8a. However, no significant correlation was found along the stromal line. Together, the data we described here, although somewhat discouraging, showed that in epithelial cells from which ESCC originated, acidicity mediated by MCT4 may be responsible for lactate release and may have an effect on the infiltration of TILs we assessed.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China; Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Lifei Yang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qiqi Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, PR China.
| |
Collapse
|
7
|
Zafeiriadou A, Kollias I, Londra T, Tsaroucha E, Georgoulias V, Kotsakis A, Lianidou E, Markou A. Metabolism-Related Gene Expression in Circulating Tumor Cells from Patients with Early Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133237. [PMID: 35805008 PMCID: PMC9264894 DOI: 10.3390/cancers14133237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In the present study, the expression of three Metabolism-Related Enzymes (MRGs) that are related to glucose and pyruvate metabolism, in parallel with glucose and monocarboxylate transporter expression (HK2, MCT1, PHGDH), was studied in CTCs isolated from the peripheral blood of early stage NSCLC patients at different timepoints. The expression levels of all tested MRGs decreased in CTCs one month after surgery, but a significant increase was noticed at the time of relapse for PHGDH and MCT1 only. An overexpression of MRGs was observed at a high frequency in the CTCs isolated from early NSCLC patients, thereby supporting the role of MRGs in metastatic processes. The glycolytic and mesenchymal subpopulation of CTCs was significantly predominant compared to CTCs that wereglycolytic but not mesenchymal-like. Our data indicate that MRGs merit further evaluation through large and well-defined cohort studies. Abstract Purpose: Metabolic reprogramming is now characterized as one of the core hallmarks of cancer, and it has already been shown that the altered genomic profile of metabolically rewired cancer cells can give valuable information. In this study, we quantified three Metabolism-Related Gene (MRG) transcripts in the circulating tumor cells (CTCs) of early stage NSCLC patients and evaluated their associations with epithelial and EMT markers. Experimental Design: We first developed and analytically validated highly sensitive RT-qPCR assays for the quantification of HK2, MCT1 and PHGDH transcripts, and further studied the expression of MRGs in CTCs that were isolated using a size-dependent microfluidic device (Parsortix, Angle) from the peripheral blood of: (a) 46 NSCLC patients at baseline, (b) 39/46 of these patients one month after surgery, (c) 10/46 patients at relapse and (d) 10 pairs of cancerous and adjacent non-cancerous FFPE tissues from the same NSCLC patients. Epithelial and EMT markers were also evaluated. Results: MCT1 and HK2 were differentially expressed between HD and NSCLC patients. An overexpression of MCT1 was detected in 15/46 (32.6%) and 3/10 (30%) patients at baseline and at progression disease (PD), respectively, whereas an overexpression of HK2 was detected in 30.4% and 0% of CTCs in the same group of samples. The expression levels of all tested MRGs decreased in CTCs one month after surgery, but a significant increase was noticed at the time of relapse for PHGDH and MCT1 only. The expression levels of HK2 and MCT1 were associated with the overexpression of mesenchymal markers (TWIST-1 and VIM). Conclusion: An overexpression of MRGs was observed at a high frequency in the CTCs isolated from early NSCLC patients, thereby supporting the role of MRGs in metastatic processes. The glycolytic and mesenchymal subpopulation of CTCs was significantly predominant compared to CTCs that were glycolytic but not mesenchymal-like. Our data indicate that MRGs merit further evaluation through large and well-defined cohort studies.
Collapse
Affiliation(s)
- A. Zafeiriadou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - I. Kollias
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - T. Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - E. Tsaroucha
- ‘Sotiria’ General Hospital for Chest Diseases, 11527 Athens, Greece;
| | - V. Georgoulias
- First Department of Medical Oncology, IASO General Hospital of Athens, 15123 Athens, Greece;
| | - A. Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Larissa, Greece;
| | - E. Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
| | - A. Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.Z.); (I.K.); (T.L.); (E.L.)
- Correspondence:
| |
Collapse
|
8
|
Tao Q, Li X, Zhu T, Ge X, Gong S, Guo J, Ma R. Lactate Transporter SLC16A3 (MCT4) as an Onco-Immunological Biomarker Associating Tumor Microenvironment and Immune Responses in Lung Cancer. Int J Gen Med 2022; 15:4465-4474. [PMID: 35509603 PMCID: PMC9059363 DOI: 10.2147/ijgm.s353592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Lactate, a marker of tumor metabolic reprogramming, maintains the acidic microenvironment and also affects the metabolism and function of immune cells. SLC16A3 is responsible for the extracellular transport of lactate, which is a key component of glycolysis. However, the role of SLC16A3 in immune infiltration and immunosuppression of lung cancer is largely unknown. Our study explored the therapeutic and prognostic value of SLC16A3 in predicting immune infiltration and immune checkpoint efficacy of lung cancer. Methods SLC16A3 expression was evaluated with TCGA database. Kaplan–Meier analysis was performed for survival rates. GO and KEEG enrichment was conducted to determine predictive signaling pathways. We utilized TIMER and CIBERSORT to analyze the correlation between SLC16A3 and immunocyte infiltration as well as immune checkpoint. Interleukin and HIF-1a expression was measured with ELISA kit and flow cytometry separately. Results In comparison with normal tissues, SLC16A3 expression was significantly upregulated in both lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC), which was closely related to poor prognosis. GO analysis indicated that SLC16A3 involved in different signal pathways in LUAD and LUSC and linked to HIF-1 signaling in LUAD. High SLC16A3 was correlated with immunosuppressive cells (Treg, Th2 and iDC), immune checkpoint (PD1, PD-L1, PVR, Tim-3, ITGAM) and immunosuppressive factors (foxp3, TGF-β) in LUAD not LUSC. Furthermore, SLC16A3 was identified to tightly interact with IL-8 which may induce microenvironment immune tolerance. Based on the clinical prediction, we performed experiments with LUAD A549 cells and showed reduced IL-8 and HIF-1a when treated with SLC16A3 knockdown. HIF-1a stimulation by dimethyloxalylglycine (DMOG) could restore IL-8 secretion in SLC16A3 downregulated cells. Conclusion Taken together, our results suggest that SLC16A3 contributes to a worse prognosis in lung cancer and may play an important role in immune microenvironment and evasion through HIF-1a-IL8 axis, which could be a novel therapeutic target for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Qingsong Tao
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China
| | - Xin Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Ting Zhu
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China
| | - Xiaoqin Ge
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China
| | - Shengping Gong
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China
| | - Jianxin Guo
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China
- Correspondence: Jianxin Guo; Ruishuang Ma, Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China, Email ;
| | - Ruishuang Ma
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, People’s Republic of China
- Central Laboratory of the Medical Research Center, Ningbo First Hospital, Ningbo, People’s Republic of China
| |
Collapse
|
9
|
The Evolving Concept of Complete Resection in Lung Cancer Surgery. Cancers (Basel) 2021; 13:cancers13112583. [PMID: 34070418 PMCID: PMC8197519 DOI: 10.3390/cancers13112583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In the surgical treatment of lung cancer, the complete removal of the portion of the lung where the cancer is and of the involved adjacent structures is of paramount importance to achieve long-term survival. The International Association for the Study of Lung Cancer (IASLC) proposed a definition of complete resection that included a well-defined type of removal of the regional lymph nodes as a fundamental step. The lymph nodes may contain cancer cells and, if left behind, cancer will soon progress. The IASLC also defined incomplete resection when there is any evidence of persistent cancer after the operation. It also defined an intermediate condition, uncertain resection, when no evidence of residual disease can be proved, but all the conditions of complete resection are not fulfilled. Four validations of the definitions have proved their prognostic value and, therefore, the definitions should be followed when a surgical resection of lung cancer is planned. Abstract Different definitions of complete resection were formulated to complement the residual tumor (R) descriptor proposed by the American Joint Committee on Cancer in 1977. The definitions went beyond resection margins to include the status of the visceral pleura, the most distant nodes and the nodal capsule and the performance of a complete mediastinal lymphadenectomy. In 2005, the International Association for the Study of Lung Cancer (IASLC) proposed definitions for complete, incomplete and uncertain resections for international implementation. Central to the IASLC definition of complete resection is an adequate nodal evaluation either by systematic nodal dissection or lobe-specific systematic nodal dissection, as well as the integrity of the highest mediastinal node, the nodal capsule and the resection margins. When there is evidence of cancer remaining after treatment, the resection is incomplete, and when all margins are free of tumor, but the conditions for complete resection are not fulfilled, the resection is defined as uncertain. The prognostic relevance of the definitions has been validated by four studies. The definitions can be improved in the future by considering the cells spread through air spaces, the residual tumor cells, DNA or RNA in the blood, and the determination of the adequate margins and lymphadenectomy in sublobar resections.
Collapse
|