1
|
Yu P, Zhao X, Zhou D, Wang S, Hu Z, Lian K, Zhang N, Duan P. The microRNA-mediated apoptotic signaling axis in male reproduction: a possible and targetable culprit in male infertility. Cell Biol Toxicol 2025; 41:54. [PMID: 40038116 PMCID: PMC11880093 DOI: 10.1007/s10565-025-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Recently, infertility has emerged as a significant and prevalent public health concern warranting considerable attention. Apoptosis, recognized as programmed cell death, constitutes a crucial process essential for the maintenance of normal spermatogenesis. Multiple investigations have illustrated that the dysregulated apoptosis of reproductive cells, encompassing spermatogonial stem cells, Sertoli cells, and Leydig cells, serves as a causative factor in male infertility. MicroRNAs represent a class of small RNA molecules that exert negative regulatory control over gene expression using direct interaction with messenger RNA transcripts. Previous studies have established that aberrant expression of miRNAs induces apoptosis in reproductive tissues, correlating with reproductive dysfunctions and infertility. In this review, we offer a comprehensive overview of miRNAs and their respective target genes implicated in the apoptotic process. As well, miRNAs are involved in multiple apoptotic signaling pathways, namely the PI3K/AKT, NOTCH, Wnt/β-catenin, and mTOR signaling cascades, exerting both negative and positive effects. We additionally elucidate the significant functions played by lncRNAs and circular RNAs as competing endogenous RNAs in the process of apoptosis within reproductive cells. We further illustrate that external factors, including silica nanoparticles, Cyclosporine A, and smoking, induce dysregulation of miRNAs, resulting in apoptosis within reproductive cells and subsequent male reproductive toxicity. Further, we discuss the implication of heat stress, hypoxia, and diabetes in reproductive cell apoptosis induced by miRNA dysregulation in male infertility. Finally, we demonstrate that the modulation of miRNAs via traditional and novel medicine could protect reproductive cells from apoptosis and be implemented as a therapeutic approach in male infertility.
Collapse
Affiliation(s)
- Pengxia Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xue Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Dan Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Songtao Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zihuan Hu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Kai Lian
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Nanhui Zhang
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
2
|
Cassuto NG, Boitrelle F, Mouik H, Larue L, Keromnes G, Lédée N, Part-Ellenberg L, Dray G, Ruoso L, Rouen A, De Vos J, Assou S. Genome-Wide microRNA Expression Profiling in Human Spermatozoa and Its Relation to Sperm Quality. Genes (Basel) 2025; 16:53. [PMID: 39858600 PMCID: PMC11765444 DOI: 10.3390/genes16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Sperm samples are separated into bad and good quality samples in function of their phenotype, but this does not indicate their genetic quality. METHODS Here, we used GeneChip miRNA arrays to analyze microRNA expression in ten semen samples selected based on high-magnification morphology (score 6 vs. score 0) to identify miRNAs linked to sperm phenotype. RESULTS We found 86 upregulated and 21 downregulated miRNAs in good-quality sperm (score 6) compared with bad-quality sperm samples (score 0) (fold change > 2 and p-value < 0.05). MiR-34 (FC × 30, p = 8.43 × 10-8), miR-30 (FC × 12, p = 3.75 × 10-6), miR-122 (FC × 8, p = 0.0031), miR-20 (FC × 5.6, p = 0.0223), miR-182 (FC × 4.83, p = 0.0008) and miR-191 (FC × 4, p = 1.61 × 10-6) were among these upregulated miRNAs. In silico prediction algorithms predicted that miRNAs upregulated in good-quality sperm targeted 910 genes involved in key biological functions of spermatozoa, such as cell death and survival, cellular movement, molecular transport, response to stimuli, metabolism, and the regulation of oxidative stress. Genes deregulated in bad-quality sperm were involved in cell growth and proliferation. CONCLUSIONS This study reveals that miRNA profiling may provide potential biomarkers of sperm quality.
Collapse
Affiliation(s)
| | - Florence Boitrelle
- Biology-Reproduction-Epigenetic-Environment-Development BREED, INRAE, Paris Saclay University, UVSQ, 78350 Jouy-en-Josas, France
| | - Hakima Mouik
- Faculty of Medicine and Pharmacy, University of Hassan II, Casablanca 28800, Morocco
| | - Lionel Larue
- IVF ART Diaconesses Hospital, île de France, 75012 Paris, France
| | - Gwenola Keromnes
- IVF ART Diaconesses Hospital, île de France, 75012 Paris, France
| | - Nathalie Lédée
- IVF Center Bluets-Drouot, Les Bluets Hospital, 75012 Paris, France
| | | | - Geraldine Dray
- IVF ART Bluets Hospital, île de France, 75012 Paris, France
| | - Léa Ruoso
- ART Unit, Drouot Laboratory, 75009 Paris, France
| | - Alexandre Rouen
- AP-HP, Hôtel-Dieu, Sleep and Vigilance Center, Université Paris Cité, VIFASOM, ERC 7330, 75006 Paris, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy (IRMB), University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy (IRMB), University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
3
|
Huang R, Chen J, Guo B, Jiang C, Sun W. Diabetes-induced male infertility: potential mechanisms and treatment options. Mol Med 2024; 30:11. [PMID: 38225568 PMCID: PMC10790413 DOI: 10.1186/s10020-023-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Male infertility is a physiological phenomenon in which a man is unable to impregnate a fertile woman during a 12-month period of continuous, unprotected sexual intercourse. A growing body of clinical and epidemiological evidence indicates that the increasing incidence of male reproductive problems, especially infertility, shows a very similar trend to the incidence of diabetes within the same age range. In addition, a large number of previous in vivo and in vitro experiments have also suggested that the complex pathophysiological changes caused by diabetes may induce male infertility in multiple aspects, including hypothalamic-pituitary-gonadal axis dysfunction, spermatogenesis and maturation disorders, testicular interstitial cell damage erectile dysfunction. Based on the above related mechanisms, a large number of studies have focused on the potential therapeutic association between diabetes progression and infertility in patients with diabetes and infertility, providing important clues for the treatment of this population. In this paper, we summarized the research results of the effects of diabetes on male reproductive function in recent 5 years, elaborated the potential pathophysiological mechanisms of male infertility induced by diabetes, and reviewed and prospected the therapeutic measures.
Collapse
Affiliation(s)
- Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Jiawang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Weiming Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
4
|
Gupta A, Mandal K, Singh P, Sarkar R, Majumdar SS. Declining levels of miR-382-3p at puberty trigger the onset of spermatogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:192-207. [PMID: 34513304 PMCID: PMC8413679 DOI: 10.1016/j.omtn.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
A major change in the transcriptome of testicular Sertoli cells (Scs) at the onset of puberty enables them to induce robust spermatogenesis. Through comprehensive literature mining, we generated a list of genes crucial for Sc functioning and computationally predicted the microRNAs regulating them. Differential expression analysis of microRNAs in infant and pubertal rat Scs showed that miR-382-3p levels decline significantly in pubertal Scs. Interestingly, miR-382-3p was found to regulate genes like Ar and Wt1, which are crucial for functional competence of Scs. We generated a transgenic (Tg) mouse model in which pubertal decline of miR-382-3p was prevented by its overexpression in pubertal Scs. Elevated miR-382-3p restricted the functional maturation of Scs at puberty, leading to infertility. Prevention of decline in miR-382-3p expression in pubertal Scs was responsible for defective blood-testis barrier (BTB) formation, severe testicular defects, low epididymal sperm counts and loss of fertility in these mice. This provided substantial evidence that decline in levels of miR-382-3p at puberty is the essential trigger for onset of robust spermatogenesis at puberty. Hence, sustained high levels of miR-382-3p in pubertal Scs could be one of the underlying causes of idiopathic male infertility and should be considered for diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Parminder Singh
- Metabolic Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
- Corresponding author: Subeer S. Majumdar, Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|