1
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Yang B, Li X. Unveiling the Mechanisms of Bone Marrow Toxicity Induced by Lead Acetate Exposure. Biol Trace Elem Res 2024; 202:1041-1066. [PMID: 37378799 DOI: 10.1007/s12011-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Lead (Pb), a widespread heavy metal, causes severe toxicity in human and animal organs (e.g., bone marrow), whereas the mechanisms of the bone marrow toxicity induced by Pb exposure are unclear. Hence, this study was designed to reveal the hub genes involved in Pb-induced bone marrow toxicity. GSE59894 dataset obtained from Gene Expression Omnibus (GEO) was composed of lead acetate (PbAc2)-treated and control bone marrow samples. Totally 120 and 85 differentially expressed genes (DEGs) were identified on the 1st day, while 153 and 157 DEGs on the 3rd day in the bone marrow treated with 200 and 600 mg/kg of PbAc2, respectively. Notably, a total of 28 and 32 overlapping DEGs were identified in the bone marrow on the 1st and 3rd day treated with PbAc2, respectively. Biological process analysis suggested that the common DEGs were primarily participated in cell differentiation, the response to drug, xenobiotic stimulus, and organic cyclic compound. Pathway analysis demonstrated that the overlapping DEGs were primarily linked to PI3K-Akt, TGF-β, MAPK, and osteoclast differentiation signaling pathways. Moreover, the hub genes, including PLD2, DAPK1, ALB, TNF, FOS, CDKN1A, and TGFB3, might contribute to PbAc2-induced bone marrow toxicity. Overall, our study offers an important insight into the molecular mechanisms of Pb-induced bone marrow toxicity.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
3
|
Parithathvi A, Choudhari N, Dsouza HS. Prenatal and early life lead exposure induced neurotoxicity. Hum Exp Toxicol 2024; 43:9603271241285523. [PMID: 39340316 DOI: 10.1177/09603271241285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Lead (Pb) has become a major environmental contaminant. There are several ways in which lead can enter the human body and cause toxic effects on human health. This review focuses on the impact of lead toxicity at prenatal and early life stages and its effect on neurodevelopment. Lead exposure to the developing foetus targets foetal neural stem cells. Hence, it has detrimental effects on developing neural and glial cells, adversely influencing cognition and behaviour. Lead has a profound influence on the movement of calcium ions (Ca2+), which can be attributed to most of the mechanisms by which lead affects neurodevelopment. There is no known safe threshold of lead exposure for children. Lead can affect foetal neurodevelopment leading to various neurological disorders, and neurotoxic effects on behavioural and cognitive outcomes. In this review, we discuss prenatal and early-life lead exposure, its mechanism, and consequences for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease in later stages of life. This review further highlights the importance of lead exposure during pregnancy and lactation periods as well as early development of the child in understanding the extent of lead-induced neurological damage to the foetus/children and the associated future risks.
Collapse
Affiliation(s)
- Aluru Parithathvi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Neha Choudhari
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D, van Herwijnen MHM, Lundh T, Bergdahl IA, Kyrtopoulos SA, de Kok TM, Smeets HJM, Briedé JJ, Krauskopf J. Lead-exposure associated miRNAs in humans and Alzheimer's disease as potential biomarkers of the disease and disease processes. Sci Rep 2022; 12:15966. [PMID: 36153426 PMCID: PMC9509380 DOI: 10.1038/s41598-022-20305-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that eventually affects memory and behavior. The identification of biomarkers based on risk factors for AD provides insight into the disease since the exact cause of AD remains unknown. Several studies have proposed microRNAs (miRNAs) in blood as potential biomarkers for AD. Exposure to heavy metals is a potential risk factor for onset and development of AD. Blood cells of subjects that are exposed to lead detected in the circulatory system, potentially reflect molecular responses to this exposure that are similar to the response of neurons. In this study we analyzed blood cell-derived miRNAs derived from a general population as proxies of potentially AD-related mechanisms triggered by lead exposure. Subsequently, we analyzed these mechanisms in the brain tissue of AD subjects and controls. A total of four miRNAs were identified as lead exposure-associated with hsa-miR-3651, hsa-miR-150-5p and hsa-miR-664b-3p being negatively and hsa-miR-627 positively associated. In human brain derived from AD and AD control subjects all four miRNAs were detected. Moreover, two miRNAs (miR-3651, miR-664b-3p) showed significant differential expression in AD brains versus controls, in accordance with the change direction of lead exposure. The miRNAs' gene targets were validated for expression in the human brain and were found enriched in AD-relevant pathways such as axon guidance. Moreover, we identified several AD relevant transcription factors such as CREB1 associated with the identified miRNAs. These findings suggest that the identified miRNAs are involved in the development of AD and might be useful in the development of new, less invasive biomarkers for monitoring of novel therapies or of processes involved in AD development.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Marcha Verheijen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Julia Czuryło
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden
| | - Ingvar A Bergdahl
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
5
|
Liu R, Bai L, Liu M, Wang R, Wu Y, Li Q, Ba Y, Zhang H, Zhou G, Yu F, Huang H. Combined exposure of lead and high-fat diet enhanced cognitive decline via interacting with CREB-BDNF signaling in male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119200. [PMID: 35364187 DOI: 10.1016/j.envpol.2022.119200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The health risks to populations induced by lead (Pb) and high-fat diets (HFD) have become a global public health problem. Pb and HFD often co-exist and are co-occurring risk factors for cognitive impairment. This study investigates effect of combined Pb and HFD on cognitive function, and explores the underlying mechanisms in terms of regulatory components of synaptic plasticity and insulin signaling pathway. We showed that the co-exposure of Pb and HFD further increased blood Pb levels, caused body weight loss and dyslipidemia. The results from Morris water maze (MWM) test and Nissl staining disclosed that Pb and HFD each contributed to cognitive deficits and neuronal damage and combined exposure enhanced this toxic injury. Pb and HFD decreased the levels of synapsin-1, GAP-43 and PSD-95 protein related to synaptic properties and SIRT1, NMDARs, phosphorylated CREB and BDNF related to synaptic plasticity regulatory, and these decreases was greater when combined exposure. Additionally, we revealed that Pb and HFD promoted IRS-1 phosphorylation and subsequently reduced downstream PI3K-Akt kinases phosphorylation in hippocampus and cortex of rats, and this process was aggravated when co-exposure. Collectively, our data suggested that combined exposure of Pb and HFD enhanced cognitive deficits, pointing to additive effects in rats than the individual stress effects related to multiple signaling pathways with CREB-BDNF signaling as the hub. This study emphasizes the need to evaluate the effects of mixed exposures on brain function in realistic environment and to better inform prevention of neurological disorders via modulating central pathway, such as CREB/BDNF signaling.
Collapse
Affiliation(s)
- Rundong Liu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Bai
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengchen Liu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruike Wang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Li
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guoyu Zhou
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Yu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Huang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Tsamou M, Roggen EL. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429). J Alzheimers Dis Rep 2022; 6:271-296. [PMID: 35891639 PMCID: PMC9277675 DOI: 10.3233/adr-220015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer’s disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | | |
Collapse
|
7
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|