1
|
Lin H, Guo B, Li Z, Wang C, Wu W, Lu Z, Wang L, Wu J, Li J, Hao J, Feng Y. Human embryonic stem cell-derived immunity-and-matrix-regulatory cells on collagen scaffold effectively treat rat corneal alkali burn. Exp Eye Res 2025; 251:110164. [PMID: 39571781 DOI: 10.1016/j.exer.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Corneal alkali burns (CAB) are a severe form of ocular injury that often leads to significant vision loss, with limited effective treatment options available beyond corneal transplantation. Immunity and matrix-regulatory cells (IMRCs) have emerged as a promising alternative due to their ability to modulate immune responses and support tissue repair. This study investigates the efficacy of IMRCs on collagen scaffolds (IMRCs-col) for treating CAB in a rat model. We developed a novel treatment combining IMRCs with a collagen scaffold to align with the ocular surface structure. In vitro analyses showed that IMRCs-col significantly upregulated the expression of immune regulatory molecules, including IL-1RA and SCF. Additionally, IMRCs-col effectively inhibited the production of pro-inflammatory cytokines (IL-8 and Gro-a/CXCL1) while promoting pro-regenerative cytokines (bFGF, HGF, and PDGF). In an animal model of CAB, IMRCs-col transplantation demonstrated substantial efficacy in restoring corneal opacity and reducing neovascularization. Histological examination revealed reduced inflammation and improved corneal tissue regeneration compared to untreated CAB. Enhanced activation of pathways associated with anti-inflammatory responses and tissue repair was observed at days 3, 7, and 21 post-treatment.
Collapse
Affiliation(s)
- Haimiao Lin
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Baojie Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhaoxiang Lu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinming Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Li M, Lan Y, Gao J, Yuan S, Hou S, Guo T, Zhao F, Wang Y, Yuan W, Wang X. Rapamycin Promotes the Expansion of Myeloid Cells by Increasing G-CSF Expression in Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:779159. [PMID: 35372343 PMCID: PMC8969869 DOI: 10.3389/fcell.2022.779159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Rapamycin, also known as sirolimus, an inhibitor of mammalian target of rapamycin (mTOR), is a regulatory kinase responsible for multiple signal transduction pathways. Although rapamycin has been widely used in treating various hematologic diseases, the effects of rapamycin are still not fully understood. Here we found that both oral and intraperitoneal administration of rapamycin led to the expansion of myeloid lineage, while intraperitoneal administration of rapamycin impaired granulocyte differentiation in mice. Rapamycin induced bone marrow mesenchymal stem cells to produce more G-CSF in vitro and in vivo, and promoted the myeloid cells expansion. Our results thus demonstrated that intraperitoneal administration of rapamycin might promote the expansion of myeloid lineage while impair myeloid cell differentiation in vivo.
Collapse
Affiliation(s)
- Minghao Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Shanghai Blood Center, Shanghai, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juan Gao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomin Wang,
| |
Collapse
|