1
|
Yin L, Zhang Y, Fu G, Huang H, Su H, Zhang Y, Chen Q, Li Q, Yang W. Knowledge mapping of exosomes in preeclampsia: a bibliometric analysis (2008-2023). Front Endocrinol (Lausanne) 2025; 16:1546554. [PMID: 40104134 PMCID: PMC11913699 DOI: 10.3389/fendo.2025.1546554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Background Exosome research in preeclampsia is gaining increasingly popular, however thorough and unbiased summaries of the field's present understanding are hard to come by. Therefore, this study aims to conduct a bibliometric analysis of the publication "Exosomes in Preeclampsia" in order to visually analyze the state of the field and identify emerging trends. Methods From 2008 to 2023, the Web of Science database was searched for publications related to exosomes in preeclampsia. Three software packages-VOSviewer, CiteSpace, and the R program "bibliometrix"-were used to conduct bibliometric analysis. Results Analysis of 257 publications produced by 1454 scholars from 48 countries/regions and 435 institutions, published in 135 academic journals. The quantity of studies concerning exosomes in preeclampsia is steadily increasing. China and the United States lead in publications, with Oxford being the most active university. Placent has written the most relevant study and has received the highest number of citations. Carlos Salomon has the most number of published articles and is the most referenced author. The 10 most frequently mentioned sources were used as a knowledge basis. The predominant terms examined include extracellular vesicle, expression, pregnancy, microparticle, and microRNA. Utilizing fundamental research on exosomes in preeclampsia for clinical diagnosis and therapy is a current popular research focus and direction. Utilizing fundamental research on exosomes in preeclampsia for clinical diagnosis and treatment is currently a popular research focus and direction. Conclusion This study offers a comprehensive overview of trends and advancements in the research of exosomes in preeclampsia through bibliometrics. This material highlights the current research frontiers and trending directions, serving as a valuable reference for researchers in the subject.
Collapse
Affiliation(s)
- Liang Yin
- Department of Emergency, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yuchao Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Guanfeng Fu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Haiqin Huang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hang Su
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Yipeng Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Qichun Chen
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Qinghua Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Weiwei Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Li X, Zhao W, Wang Z, Moura AK, Roudbari K, Zuo R, Hu JZ, Wang YT, Li PL, Zhang Y. Acid Sphingomyelinase Regulates AdipoRon-Induced Differentiation of Arterial Smooth Muscle Cells via TFEB Activation. Int J Mol Sci 2025; 26:2147. [PMID: 40076784 PMCID: PMC11899876 DOI: 10.3390/ijms26052147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy-lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present study was designed to examine whether acid sphingomyelinase (ASM; gene symbol Smpd1) is involved in mediating adipoRon-induced activation of TFEB-autophagy signaling and inhibition of proliferation/migration in arterial SMCs. Our results showed that adipoRon induced ASM expression and ceramide production in Smpd1+/+ SMCs, which were abolished in Smpd1-/- SMCs. Compared to Smpd1+/+ SMCs, Smpd1-/- SMCs exhibited less TFEB nuclear translocation and activation of autophagy signaling induced by adipoRon stimulation. SMC differentiation was further characterized by retarded wound healing, reduced proliferation, F-actin reorganization, and MMP downregulation. The results showed that Smpd1-/- SMCs were less responsive to adipoRon-induced differentiation than Smpd1+/+ SMCs. Mechanistically, adipoRon increased the expression of protein phosphatases such as calcineurin and PP2A in Smpd1+/+ SMCs. The calcineurin inhibitor FK506/cyclosporin A or PP2A inhibitor okadaic acid significantly attenuated adipoRon-induced activation of TFEB-autophagy signaling. In addition, adipoRon-induced expressions of calcineurin and PP2A were not observed in Smpd1-/- SMCs. However, activation of calcineurin by lysosomal TRPML1-Ca2+ channel agonist ML-SA1 rescued the activation of TFEB-autophagy signaling and the effects of adipoRon on cell differentiation in Smpd1-/- SMCs. Taken together, these data suggested that ASM regulates adipoRon-induced SMC differentiation through TFEB activation. This study provided novel mechanistic insights into the therapeutic effects of adipoRon on TFEB signaling and pathological vascular remodeling.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Wei Zhao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (X.L.); (W.Z.); (A.K.M.); (K.R.); (R.Z.); (J.Z.H.); (Y.-T.W.)
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Yang Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
3
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Trojani MC, Santucci-Darmanin S, Breuil V, Carle GF, Pierrefite-Carle V. Lysosomal exocytosis: From cell protection to protumoral functions. Cancer Lett 2024; 597:217024. [PMID: 38871244 DOI: 10.1016/j.canlet.2024.217024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.
Collapse
Affiliation(s)
- Marie-Charlotte Trojani
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; INSERM, Paris, France.
| |
Collapse
|
5
|
Tang H, Luo X, Shen X, Fan D, Rao J, Wan Y, Ma H, Guo X, Liu Z, Gao J. Lysosome-related biomarkers in preeclampsia and cancers: Machine learning and bioinformatics analysis. Comput Biol Med 2024; 171:108201. [PMID: 38428097 DOI: 10.1016/j.compbiomed.2024.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/21/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Lysosomes serve as regulatory hubs, and play a pivotal role in human diseases. However, the precise functions and mechanisms of action of lysosome-related genes remain unclear in preeclampsia and cancers. This study aimed to identify lysosome-related biomarkers in preeclampsia, and further explore the biomarkers shared between preeclampsia and cancers. MATERIALS AND METHODS We obtained GSE60438 and GSE75010 datasets from the Gene Expression Omnibus database, pre-procesed them and merged them into a training cohort. The limma package in R was used to identify the differentially expressed mRNAs between the preeclampsia and normal control groups. Differentially expressed lysosome-related genes were identified by intersecting the differentially expressed mRNAs and lysosome-related genes obtained from Gene Ontology and GSEA databases. Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed using the DAVID database. The CIBERSORT method was used to analyze immune cell infiltration. Weighted gene co-expression analyses and three machine learning algorithm were used to identify lysosome-related diagnostic biomarkers. Lysosome-related diagnostic biomarkers were further validated in the testing cohort GSE25906. Nomogram diagnostic models for preeclampsia were constructed. In addition, pan-cancer analysis of lysosome-related diagnostic biomarkers were identified by was performed using the TIMER, Sangebox and TISIDB databases. Finally, the Drug-Gene Interaction, TheMarker and DSigDB Databases were used for drug-gene interactions analysis. RESULTS A total of 11 differentially expressed lysosome-related genes were identified between the preeclampsia and control groups. Three molecular clusters connected to lysosome were identified, and enrichment analysis demonstrated their strong relevance to the development and progression of preeclampsia. Immune infiltration analysis revealed significant immunity heterogeneity among different clusters. GBA, OCRL, TLR7 and HEXB were identified as lysosome-related diagnostic biomarkers with high AUC values, and validated in the testing cohort GSE25906. Nomogram, calibration curve, and decision curve analysis confirmed the accuracy of predicting the occurrence of preeclampsia based on OCRL and HEXB. Pan-cancer analysis showed that GBA, OCRL, TLR7 and HEXB were associated with the prognosis of patients with various tumors and tumor immune cell infiltration. Twelve drugs were identified as potential drugs for the treatment of preeclampsia and cancers. CONCLUSION This study identified GBA, OCRL, TLR7 and HEXB as potential lysosome-related diagnostic biomarkers shared between preeclampsia and cancers.
Collapse
Affiliation(s)
- Hai Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Xin Luo
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Xiuyin Shen
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Jiamin Rao
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Yingchun Wan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Huiting Ma
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Xiaoling Guo
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Zhengping Liu
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Obstetrics, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Jie Gao
- Premarital Examination and Superior Examination Department, Jingzhou Gongan Maternal and Child Health Care Hospital, Jingzhou, Hubei, 434300, China.
| |
Collapse
|
6
|
Varela YR, Iriondo MN, Goñi FM, Alonso A, Montes LR. Ceramide regulation of autophagy: A biophysical approach. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159444. [PMID: 38056762 DOI: 10.1016/j.bbalip.2023.159444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.
Collapse
Affiliation(s)
- Yaiza R Varela
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Marina N Iriondo
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain.
| | - L Ruth Montes
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| |
Collapse
|
7
|
Klemetti MM, Pettersson ABV, Ahmad Khan A, Ermini L, Porter TR, Litvack ML, Alahari S, Zamudio S, Illsley NP, Röst H, Post M, Caniggia I. Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. J Extracell Vesicles 2024; 13:e12413. [PMID: 38353485 PMCID: PMC10865917 DOI: 10.1002/jev2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
| | - Ante B. V. Pettersson
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Aafaque Ahmad Khan
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Leonardo Ermini
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Tyler R. Porter
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Michael L. Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Sruthi Alahari
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | | | | | - Hannes Röst
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Isabella Caniggia
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
8
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
9
|
Chen Y, Liu M, Wang Y. Bioinformatic analysis reveals lysosome-related biomarkers and molecular subtypes in preeclampsia: novel insights into the pathogenesis of preeclampsia. Front Genet 2023; 14:1228110. [PMID: 37576559 PMCID: PMC10416227 DOI: 10.3389/fgene.2023.1228110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background: The process of lysosomal biogenesis and exocytosis in preeclamptic placentae plays a role in causing maternal endothelial dysfunction. However, the specific lysosome-associated markers relevant to preeclampsia (PE) are not well-defined. Our objective is to discover new biomarkers and molecular subtypes associated with lysosomes that could improve the diagnosis and treatment of PE. Methods: We obtained four microarray datasets related to PE from the Gene Expression Omnibus (GEO) database. The limma package was utilized to identify genes that were differentially expressed between individuals with the disease and healthy controls. The logistic regression analysis was used to identify core diagnostic biomarkers, which were subsequently validated by independent datasets and clinical samples. Additionally, a consensus clustering method was utilized to distinguish between different subtypes of PE. Following this, functional enrichment analysis, GSEA, GSVA, and immune cell infiltration were conducted to compare the two subtypes and identify any differences in their functional characteristics and immune cell composition. Results: We identified 16 PE-specific lysosome-related genes. Through regression analysis, two genes, GNPTG and CTSC, were identified and subsequently validated in the external validation cohort GSE60438 and through qRT-PCR experiment. A nomogram model for the diagnosis of PE was developed and evaluated using these two genes. The model had a remarkably high predictive power (AUC values of the training set, validation set, and clinical samples were 0.897, 0.788, and 0.979, respectively). Additionally, two different molecular subtypes (C1 and C2) were identified, and we found notable variations in the levels of immune cells present in the two subtypes. Conclusion: Our results not only offered a classification system but also identified novel diagnostic biomarkers for PE patients. Our findings offered an additional understanding of how to categorize PE patients and also highlighted potential avenues for creating treatments for individuals with PE.
Collapse
Affiliation(s)
- Yao Chen
- Department of Obstetrics, The First People’s Hospital of Chenzhou, Chenzhou, China
| | | | | |
Collapse
|
10
|
Alahari S, Ausman J, Porter T, Park C, Pettersson ABV, Klemetti MM, Zhang J, Post M, Caniggia I. Fibronectin and JMJD6 Signature in Circulating Placental Extracellular Vesicles for the Detection of Preeclampsia. Endocrinology 2023; 164:6997871. [PMID: 36683415 PMCID: PMC9939344 DOI: 10.1210/endocr/bqad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Preeclampsia (PE) is a major obstetric complication that is challenging to predict. Currently, there are limited tools to assess placental health/function in crucial gestational periods for diagnosis and early prediction. The glycoprotein fibronectin (FN) is augmented in PE placentae, and associated with reduced activity of JMJD6, an oxygen sensor that regulates placental FN processing. Evidence implicates placenta-derived small extracellular vesicles (sEVs) in the pathogenesis of pregnancy-associated disorders. Here, we examined the utility of FN and JMJD6 in placental sEVs as putative markers for early- and late-onset PE (E-PE and L-PE). Maternal plasma was obtained from venous blood collected longitudinally during pregnancy (10-14, 16-22, and 26-32 weeks of gestation and at delivery) in normotensive term control, preterm control, L-PE, E-PE, and gestational hypertensive individuals. Placenta-derived sEVs were isolated and their FN and JMJD6 content and JMJD6 activity were measured. In women that went on to develop preeclampsia, FN content of circulating placental sEVs was significantly elevated as early as 10 to 14 weeks of gestation and remained augmented until the time of delivery. This was accompanied by a depletion in JMJD6 content. Multivariate receiver operating characteristic analysis revealed high predictive power for FN and JMJD6 as early markers of E-PE and L-PE. In vitro, hypoxia or JMJD6 loss promoted FN accumulation in sEVs that was reverted on restoring cellular iron balance with the natural compound, Hinokitiol. Elevated FN, along with diminished JMJD6 in circulating placental sEVs, serves as an early molecular signature for the detection of different hypertensive disorders of pregnancy and their severity.
Collapse
Affiliation(s)
- Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jonathan Ausman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Ante B V Pettersson
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miira M Klemetti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Jianhong Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabella Caniggia
- Correspondence: Isabella Caniggia, MD, PhD, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, 25 Orde Street, Room 6-1004-3, Toronto, ON M5T 3H7, Canada.
| |
Collapse
|
11
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
12
|
Wu Q, Ying X, Yu W, Li H, Wei W, Lin X, Zhang X. Identification of ferroptosis-related genes in syncytiotrophoblast-derived extracellular vesicles of preeclampsia. Medicine (Baltimore) 2022; 101:e31583. [PMID: 36343018 PMCID: PMC9646584 DOI: 10.1097/md.0000000000031583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia (PE), defined as new-onset hypertension and multi-organ systemic complication during pregnancy, is the leading cause of maternal and neonatal mortality and morbidity. With extracellular vesicles research progresses, current data refers to the possibility that ferroptosis may play a role in exosomal effects. Evidence has suggested that ferroptosis may contribute to the pathogenesis of preeclampsia by bioinformatics analyses. The purpose of the current study is to identify the potential ferroptosis-related genes in syncytiotrophoblast-derived extracellular vesicles (STB-EVs) of preeclampsia using bioinformatics analyses. Clinical characteristics and gene expression data of all samples were obtained from the NCBI GEO database. The differentially expressed mRNAs (DE-mRNAs) in STB-EVs of preeclampsia were screened and then were intersected with ferroptosis genes. Functional and pathway enrichment analyses of ferroptosis-related DE-mRNAs in STB-EVs were performed. Ferroptosis-related hub genes in STB-EVs were identified by Cytoscape plugin CytoHubba with a Degree algorithm using a protein-protein interaction network built constructed from the STRING database. The predictive performance of ferroptosis-related hub genes was determined by a univariate analysis of receiver operating characteristic (ROC). The miRNA-hub gene regulatory network was constructed using the miRwalk database. A total of 1976 DE-mRNAs in STB-EVs were identified and the most enriched item identified by gene set enrichment analysis was signaling by G Protein-Coupled Receptors (normalized enrichment score = 1.238). These DE-mRNAs obtained 26 ferroptosis-related DE-mRNAs. Ferroptosis-related DE-mRNAs of gene ontology terms and Encyclopedia of Genes and Genomes pathway enrichment analysis were enriched significantly in response to oxidative stress and ferroptosis. Five hub genes (ALB, NOX4, CDKN2A, TXNRD1, and CAV1) were found in the constructed protein-protein interaction network with ferroptosis-related DE-mRNAs and the areas under the ROC curves for ALB, NOX4, CDKN2A, TXNRD1, and CAV1 were 0.938 (CI: 0.815-1.000), 0.833 (CI: 0.612-1.000), 0.875 (CI: 0.704-1.000), 0.958 (CI: 0.862-1.000), and 0.854 (CI: 0.652-1.000) in univariate analysis of ROC. We constructed a regulatory network of miRNA-hub gene and the findings demonstrate that hsa-miR-26b-5p, hsa-miR-192-5p, hsa-miR-124-3p, hsa-miR-492, hsa-miR-34a-5p and hsa-miR-155-5p could regulate most hub genes. In this study, we identified several central genes closely related to ferroptosis in STB-EVs (ALB, NOX4, CDKN2A, TXNRD1, and CAV1) that are potential biomarkers related to ferroptosis in preeclampsia. Our findings will provide evidence for the involvement of ferroptosis in preeclampsia and improve the understanding of ferroptosis-related molecular pathways in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Quanfeng Wu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Ying
- Department of Gynecology and Obstetrics, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Weiwei Yu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huanxi Li
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Wei
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueyan Lin
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Xueqin Zhang, Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China (e-mail: )
| |
Collapse
|
13
|
Fetal Myocardial Expression of GLUT1: Roles of BPA Exposure and Cord Blood Exosomes in a Rat Model. Cells 2022; 11:cells11203195. [PMID: 36291063 PMCID: PMC9601122 DOI: 10.3390/cells11203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 μg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.
Collapse
|
14
|
Dichotomy in hypoxia-induced mitochondrial fission in placental mesenchymal cells during development and preeclampsia: consequences for trophoblast mitochondrial homeostasis. Cell Death Dis 2022; 13:191. [PMID: 35220394 PMCID: PMC8882188 DOI: 10.1038/s41419-022-04641-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
AbstractDynamic changes in physiologic oxygen are required for proper placenta development; yet, when low-oxygen levels persist, placental development is halted, culminating in preeclampsia (PE), a serious complication of pregnancy. Considering mitochondria’s function is intimately linked to oxygen changes, we investigated the impact of oxygen on mitochondrial dynamics in placental mesenchymal stromal cells (pMSCs) that are vital for proper placental development. Transmission electron microscopy, proximity ligation assays for mitochondrial VDAC1 and endoplasmic reticulum IP3R, and immunoanalyses of p-DRP1 and OPA1, demonstrate that low-oxygen conditions in early 1st trimester and PE promote mitochondrial fission in pMSCs. Increased mitochondrial fission of mesenchymal cells was confirmed in whole PE placental tissue sections. Inhibition of DRP1 oligomerization with MDiVi-1 shows that low oxygen-induced mitochondrial fission is a direct consequence of DRP1 activation, likely via HIF1. Mitophagy, a downstream event prompted by mitochondrial fission, is a prominent outcome in PE, but not 1st trimester pMSCs. We also investigated whether mesenchymal–epithelial interactions affect mitochondrial dynamics of trophoblasts in PE placentae. Exposure of trophoblastic JEG3 cells to exosomes of preeclamptic pMSCs caused heightened mitochondrial fission in the cells via a sphingomyelin-dependent mechanism that was restored by MDiVi-1. Our data uncovered dichotomous regulation of mitochondrial fission and health in human placental mesenchymal cells under physiologic and pathologic hypoxic conditions and its impact on neighboring trophoblast cells.
Collapse
|
15
|
Activation of Transcription Factor EB Alleviates Tubular Epithelial Cell Injury via Restoring Lysosomal Homeostasis in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2812493. [PMID: 35082964 PMCID: PMC8786470 DOI: 10.1155/2022/2812493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
Disruption of lysosomal homeostasis contributes to the tubulopathy of diabetic nephropathy; however, its underlying mechanisms remain unclear. Herein, we report that decreased activity of transcription factor EB (TFEB) is responsible for the disturbed lysosome biogenesis and clearance in this pathological process. This was confirmed by the findings that insufficient lysosomal replenishment and damaged lysosomal clearance coincided with TFEB inactivation, which was mediated by mTOR hyperactivation in the renal tubular epithelial cells (TECs) of diabetic nephropathy. Furthermore, either TFEB overexpression or pharmacological activation of TFEB enhanced lysosomal clearance via promoting lysosomal biogenesis and protected TECs by reducing apoptosis in vitro. In addition, pharmacological activation of TFEB attenuated renal tubule injury, apoptosis, and inflammation in db/db mice. In conclusion, diabetes-induced mTOR activation represses TFEB function, thereby perturbing lysosomal homeostasis through impairing lysosomal biogenesis and clearance in TECs. Moreover, TFEB activation protects TECs from diabetic injuries via restoring lysosomal homeostasis.
Collapse
|
16
|
Qin XY, Shen HH, Zhou WJ, Mei J, Lu H, Tan XF, Zhu R, Zhou WH, Li DJ, Zhang T, Ye JF, Li MQ. Insight of Autophagy in Spontaneous Miscarriage. Int J Biol Sci 2022; 18:1150-1170. [PMID: 35173545 PMCID: PMC8771834 DOI: 10.7150/ijbs.68335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022] Open
Abstract
In some cases of spontaneous miscarriage (SM), the exact etiology cannot be determined. Autophagy, which is responsible for cellular survival under stress conditions, has also been implicated in many diseases. Recently, it is also surmised to be correlated with SM. However, the detailed mechanism remains elusive. In fact, there are several essential steps during pregnancy establishment and maintenance: trophoblasts invasion, placentation, decidualization, enrichment and infiltration of decidua immune cells (e.g., natural killer, macrophage and T cells). Accordingly, upstream molecules and downstream effects of autophagy are discussed in these processes, respectively. Of note, autophagy regulates the crosstalk between these cells at the maternal-fetal interface as well. Aberrant autophagy is found in villi, decidual stromal cells, peripheral blood mononuclear cells in SM patients, although the findings are inconsistent among different studies. Furthermore, potential treatments targeting autophagy are included, during which rapamycin and vitamin D are hot-spots in recent literatures. To conclude, a moderately activated autophagy is deeply involved in pregnancy, suggesting that autophagy should be a regulator and promising target for treating SM.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Han Lu
- Departments of Assisted Reproduction, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Xiao-Fang Tan
- Reproductive Medicine Centre, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226006, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, People's Republic of China
| | - Wen-Hui Zhou
- Medicine Centre for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China
| |
Collapse
|