1
|
Zare S, Jafarzadeh A, Zare S, Shamloo A. Exploring the dermatological applications of human mesenchymal stem cell secretome: a comprehensive review. Stem Cell Res Ther 2025; 16:177. [PMID: 40221781 PMCID: PMC11993991 DOI: 10.1186/s13287-025-04311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
INTRODUCTION Mesenchymal stem cell (MSC)-derived conditioned media is emerging as a promising alternative to stem cell therapy, owing to its abundant content of growth factors and cytokines. OBJECTIVE This review evaluates the clinical applications of MSC-conditioned media in improving scars, promoting wound healing, stimulating hair growth, and rejuvenating the skin. MATERIALS AND METHODS A thorough search of relevant databases was performed to identify studies meeting the inclusion criteria. From an initial pool of 75 articles, 16 studies published up to 2024 were selected based on their relevance, focus, and alignment with the research objectives. RESULTS Among the 17 selected studies, 5 examined the role of conditioned media in skin rejuvenation, 3 investigated its effects on hair growth, 5 assessed its efficacy in scar treatment, 2 assessed its efficacy in Inflammatory Dermatologic Disease and 2 explored its role in wound healing. All studies reported favorable outcomes, demonstrating significant improvements in scars, hair regrowth, and skin rejuvenation with the application of conditioned media. CONCLUSION This review underscores the potential of MSC-derived conditioned media in dermatology. Several studies also highlighted its enhanced therapeutic effects when combined with adjunctive treatments, such as laser therapy and microneedling, showcasing improved outcomes in dermatological care.
Collapse
Affiliation(s)
- Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Persian Bio-Based Production (PBBP) Company, Sharif University of Technology, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Azadi Street, Tarasht Avenue, Tehran, 1445613131, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Jafarzadeh
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Persian Bio-Based Production (PBBP) Company, Sharif University of Technology, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Azadi Street, Tarasht Avenue, Tehran, 1445613131, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Chang R, Wang P, Chen H, Chang SJ, Chen Q, Chang L, Qiu Y, Wang X, Lin X. Multifunctional Hydrogel Integrated Hemangioma Stem Cell-Derived Nanovesicle-Loaded Metal-Polyphenol Network Promotes Diabetic Flap Survival. Adv Healthc Mater 2025; 14:e2404776. [PMID: 40108941 DOI: 10.1002/adhm.202404776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Diabetes-associated skin defects represent a significant global health challenge. While flap grafts have been a preferred treatment for soft-tissue injuries in diabetic patients, their survival is often compromised by impaired vascularization, infection, and the adverse diabetic pathological microenvironment. To address these limitations, a hybrid photo-crosslinkable hydrogel (HPC) integrated hemangioma stem cell-derived nanovesicle (HemV)-loaded dual-metal-polyphenol network (dMPN) (HemV@dMPN/HPC) is developed. HemVs, derived from highly vascularized infantile hemangioma tissues, play a key role in promoting cell proliferation and angiogenesis. The dMPN facilitates the gradual release of copper (Cu2+) and magnesium ions (Mg2+), stimulating angiogenesis and mitigating inflammation. The HPC further sustains ion release while preserving the therapeutic efficacy of HemVs. Moreover, both HPC and Cu2+ act to confer antibacterial properties, further accelerating wound healing. This multifunctional HemV@dMPN/HPC platform offers a promising therapeutic strategy for treating large diabetic skin defects and can potentially improve flap graft survival.
Collapse
Affiliation(s)
- Rui Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hongrui Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shih-Jen Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qianyi Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yajing Qiu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
3
|
Vidotti RB, Yoshikawa AH, Sant'Ana M, Souza HR, Possebon L, Navarro da Rocha D, Ferreira JRM, Vidotti GAG, Girol AP. Reduction of inflammation and improvement of skin tissue repair using biomaterials composed of hydroxyapatite and chitosan associated to conditioned media derived from dental pulp stem cells. Int J Biol Macromol 2025; 308:142353. [PMID: 40158558 DOI: 10.1016/j.ijbiomac.2025.142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Inflammatory skin diseases, including dermatitis, are characterized by uncontrolled inflammatory responses that affect approximately 20 % of the global population. Recent therapies primarily focus on inhibition rather than regulating abnormal inflammatory response, which can induce a series of secondary side effects and drug resistance in long-term treatment. In this context, advanced therapy products based on mesenchymal stem cells are promising due to their influence on tissue regeneration. OBJECTIVES To evaluate skin healing in rats induced to manifest dermatitis and treated with biomaterial composed of hydroxyapatite and chitosan associated or not with conditioned medium from stem cells from the dental pulp. METHODS One of the primary models to investigate mechanisms of dermatitis involves the application of acetone followed by water. Skin injury was induced on the backs of the animals by rubbing acetone for 5 min for three consecutive days under sedation followed by water. The treatments started on day 3 and lasted 5 days. The experimental groups (n = 5/group) were: induced without treatment (G1), induced and treated with 10 % hydrocortisone ointment (standard treatment, 1×/day) (G2), induced and treated with biomaterial without conditioned medium (G3) and with conditioned medium (G4), applied once as a dressing. On the 8th day post-induction, the animals were euthanized to collect blood and skin fragments for histopathological and immunohistochemical studies and dosages of chemical mediators. RESULTS Groups G1 and G2 showed rupture and hyperplasia of the epidermis and inflammatory influx. Group G1 presented the highest number of mast cells, mainly degranulated ones. Groups G3 and G4 showed less thickened skin, a better tissue regeneration process, and reduced mast cells. Plasma histamine levels were also reduced in the G4 group. The expression of annexin A1 (AnxA1) and positive cells for Janus kinase (JAK)-1 and JAK-3 presented increased in groups G1 and G2 but reduced in the groups treated with biomaterials, mainly G4. Likewise, the treatments in G3 and G4 lowered levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and vascular endothelial growth factor (VEGF). CONCLUSION Treatments with biomaterials especially associated with the conditioned medium reduced the inflammatory process and promoted tissue regeneration in the dermatitis model, demonstrating potential therapeutic application.
Collapse
Affiliation(s)
- R B Vidotti
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Department of Biology, Graduate Program in Biosciences, São Paulo State University, UNESP, São José do Rio Preto Campus, SP, Brazil
| | - A H Yoshikawa
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Biochemistry and Molecular Biology Research Center, Graduate Program in Health Sciences, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
| | - M Sant'Ana
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Graduate Program in Functional and Structural Biology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - H R Souza
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil
| | - L Possebon
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil
| | - D Navarro da Rocha
- R-Crio Criogenia S.A, Campinas, SP, Brazil; Federal University of São Paulo, Department of Gynecology, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, Brazil
| | | | - G A G Vidotti
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Military Institute of Engineering, Department of Materials Engineering-SE/8, Rio de Janeiro, Brazil
| | - A P Girol
- Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Department of Biology, Graduate Program in Biosciences, São Paulo State University, UNESP, São José do Rio Preto Campus, SP, Brazil; Graduate Program in Functional and Structural Biology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil..
| |
Collapse
|
4
|
Pacilio S, Lombardi S, Costa R, Paris F, Petrocelli G, Marrazzo P, Cenacchi G, Alviano F. Role of Perinatal Stem Cell Secretome as Potential Therapy for Muscular Dystrophies. Biomedicines 2025; 13:458. [PMID: 40002871 PMCID: PMC11852414 DOI: 10.3390/biomedicines13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammation mechanisms play a critical role in muscle homeostasis, and in Muscular Dystrophies (MDs), the myofiber damage triggers chronic inflammation which significantly controls the disease progression. Immunomodulatory strategies able to target inflammatory pathways and mitigate the immune-mediated damage in MDs may provide new therapeutic options. Owing to its capacity of influencing the immune response and enhancing tissue repair, stem cells' secretome has been proposed as an adjunct or standalone treatment for MDs. In this review study, we discuss the challenging points related to the inflammation condition characterizing MD pathology and provide a concise summary of the literature supporting the potential of perinatal stem cells in targeting and modulating the MD inflammation.
Collapse
Affiliation(s)
- Serafina Pacilio
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Sara Lombardi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Francesca Paris
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Pasquale Marrazzo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (S.P.); (S.L.); (R.C.); (F.P.); (G.C.); (F.A.)
| |
Collapse
|
5
|
Soltanmohammadi F, Mahmoudi Gharehbaba A, Alizadeh E, Javadzadeh Y. Innovative approaches to tissue engineering: Utilizing decellularized extracellular matrix hydrogels for mesenchymal stem cell transport. Int J Biol Macromol 2025; 290:138893. [PMID: 39706433 DOI: 10.1016/j.ijbiomac.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the realm of tissue regeneration experienced significant advancements, leading to the development of innovative therapeutic agents. The systemic delivery of mesenchymal stem cells (MSCs) emerged as a promising strategy for promoting tissue regeneration. However, this approach is hindered by hurdles such as poor cell survival, limited cell propagation, and inadequate cell integration. Decellularized extracellular matrix (dECM) hydrogel serves as an innovative carrier that protects MSCs from the detrimental effects of the hostile microenvironment, facilitates their localization and retention at the injection site, and preserves their viability. Regarding its low immunogenicity, low cytotoxicity, high biocompatibility, and its ability to mimic natural extracellular matrix (ECM), this natural hydrogel offers a new avenue for systemic delivery of MSCs. This review digs into the properties of dECM hydrogels (dECMHs), the methods employed for decellularization and the utilization of dECMH as carriers for various types of MSCs for tissue regeneration purposes. This review also sheds light on the benefits of hybrid hydrogels composed of dECMH and other components such as proteins and polysaccharides. By addressing the limitations of conventional hydrogels and enhancing efficacy of cell therapy, dECMH opens new pathways for the future of tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Endocrin Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Beauregard MA, Bedford GC, Brenner DA, Sanchez Solis LD, Nishiguchi T, Abhimanyu, Longlax SC, Mahata B, Veiseh O, Wenzel PL, DiNardo AR, Hilton IB, Diehl MR. Persistent tailoring of MSC activation through genetic priming. Mol Ther Methods Clin Dev 2024; 32:101316. [PMID: 39282077 PMCID: PMC11396059 DOI: 10.1016/j.omtm.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.
Collapse
Affiliation(s)
| | - Guy C. Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael R. Diehl
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Jouybari MT, Mojtahedi F, Babaahmadi M, Faeed M, Eslaminejad MB, Taghiyar L. Advancements in extracellular vesicle targeted therapies for rheumatoid arthritis: insights into cellular origins, current perspectives, and emerging challenges. Stem Cell Res Ther 2024; 15:276. [PMID: 39227964 PMCID: PMC11373471 DOI: 10.1186/s13287-024-03887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Rheumatoid arthritis (RA) remains a challenging chronic autoimmune disorder characterized by persistent joint inflammation and damage. While modern regenerative strategies, encompassing cell/stem cell-based therapies, gene therapy, and tissue engineering, have advanced tissue repair efforts, a definitive cure for RA remains elusive. Consequently, there is growing interest in developing targeted therapies that directly address the underlying mechanisms driving RA pathogenesis, such as extracellular vesicles (EVs). These small membrane-bound particles can modulate immune responses within the inflammatory microenvironment of damaged cartilage. To launch the clinical potential of EVs, they can be isolated from various cell types through several techniques. EVs can carry various bioactive molecules and anti-inflammatory or pro-regenerative drugs, deliver them directly to the affected joints, and affect the behavior of injured cells, making them a compelling choice for targeted therapy and drug delivery in RA patients. However, there are still several challenges and limitations associated with EV-based therapy, including the absence of standardized protocols for EV isolation, characterization, and delivery. This review provides a comprehensive overview of the cellular sources of EVs in RA and delves into their therapeutic potential and the hurdles they must overcome.
Collapse
Affiliation(s)
- Maryam Talebi Jouybari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Mojtahedi
- Department of Immunology, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahnaz Babaahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
| | - Maryam Faeed
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
He K, Zang J, Ren T, Feng S, Liu M, Zhang X, Sun W, Chu J, Xu D, Liu F. Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Atopic Dermatitis. J Inflamm Res 2024; 17:5783-5800. [PMID: 39224661 PMCID: PMC11368146 DOI: 10.2147/jir.s479444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense itchiness that is highly prevalent worldwide.The pathogenesis of AD is complex and closely related to genetic factors, immunopathogenic factors, environmental factors, and skin infections. Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells derived from the mesenchymal stroma. They have anti-inflammatory, anti-apoptotic, and regenerative properties. Numerous studies demonstrate that MSCs can play a therapeutic role in AD by regulating various immune cells, maintaining immune homeostasis, and promoting the repair of damaged tissues. The key mediators for their biological functions are extracellular vesicles (MSC-Evs) and soluble cytokines derived from MSCs. The safety and efficacy of MSCs have been demonstrated in clinical Phase I / IIa trials for AD. This paper provides a comprehensive review of the pathogenesis of AD and the currently published studies on the function of MSCs and MSC-Evs in AD, primarily including the pathogenesis and the immunomodulatory impacts of MSCs and MSC-Evs, along with advancements in clinical studies. It provides insights for comprehending AD pathogenesis and investigating treatments based on MSCs.
Collapse
Affiliation(s)
- Kang He
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Tingting Ren
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Mohan Liu
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jinjin Chu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| |
Collapse
|
9
|
Pavlova OV, Kalsin VA, Konoplyannikov MA, Kuznetsova SM, Baldin VL, Sukhanova YS, Smirnov AV, Baklaushev VP, Ivanov YV. Outpatient regenerative therapy of a chronic diabetic foot ulcer with exposed bone surface. КЛИНИЧЕСКАЯ ПРАКТИКА 2024; 15:116-126. [DOI: 10.17816/clinpract632973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
BACKGROUND: Treatment of deep chronic wounds with the bone tissue involvement against the background of lower limb atherosclerosis and diabetic foot syndrome does not fit any reasonable hospital stay duration and at the same time has no effective outpatient methods. Therapy with conditioned medium derived from human mesenchymal stem cells (CM-MSC) may be a solution for this problem.
CLINICAL CASE DESCRIPTION: Patient F., 77-year-old, arrived for an outpatient treatment of local necrosis in the area of the 1st toe of the left foot in April, 2022. The main diagnosis: Peripheral arterial disease of the lower extremities. Multifocal atherosclerosis. Occlusion of the superficial femoral and popliteal arteries, diffuse lesions of the lower leg arteries on the left. Chronic arterial insufficiency of the 4th degree. Attempts of revascularisation of the left lower limb. Limited gangrene (Wagner IV) of the 1st toe of the left foot. Associated diseases: insulin-dependent type 2 diabetes mellitus (for more than 30 years). Diabetic polyneuropathy. Diabetic foot syndrome, neurotrophic form. Local treatment was performed by the microsurgical debridement of the affected surface in combination with the method of multilayered dressings, according to the previously patented technology. The microsurgical treatment of the bone surface in the wound area was carried out with the use of CM-MSC. Positive dynamics in the form of a partial closure of the bone fragment with soft tissue was observed on the sixth month of therapy. The complete closure of the open bone fragment was observed in 12 months from the beginning of the outpatient treatment.
CONCLUSION: The developed method of treatment using CM-MSC can be effective for chronic wounds with open bone surfaces.
Collapse
Affiliation(s)
- Olga V. Pavlova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | - Vladimir A. Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | - Mikhail A. Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- First Sechenov Moscow State Medical University (Sechenov University)
| | - Sofia M. Kuznetsova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | - Victor L. Baldin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | | | - Alexander V. Smirnov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- Russian National Research Medical University named after N.I. Pirogov
- Federal Center of Brain Research and Neurotechnologies
- Pulmonology Scientific Research Institute
| | - Yuri V. Ivanov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| |
Collapse
|
10
|
Norouzi F, Aghajani S, Vosoughi N, Sharif S, Ghahremanzadeh K, Mokhtari Z, Verdi J. Exosomes derived stem cells as a modern therapeutic approach for skin rejuvenation and hair regrowth. Regen Ther 2024; 26:1124-1137. [PMID: 39640923 PMCID: PMC11617408 DOI: 10.1016/j.reth.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Background The skin covers the surface of the body and acts as the first defense barrier against environmental damage. Exposure of the skin to environmental physical and chemical factors such as mechanical injuries, UV rays, air pollution, chemicals, etc. Leads to numerous damages to skin cells such as fibroblasts, keratinocytes, melanocytes, etc. The harmful effects of environmental factors on skin cells could lead to various skin diseases, chronic wounds, wrinkles, and skin aging. Hair is an essential part of the body, serving multiple functions such as regulating body temperature and protecting against external factors like dust (through eyelashes and eyebrows). It also reflects an individual's personality. Therefore, the need for new treatment methods for skin diseases and lesions and at the same time preserving the youth, freshness, and beauty of the skin has been highly noticed by experts. Exosomes are nanovesicles derived from cells that contain various biological compounds such as lipids, proteins, nucleic acids, and carbohydrates. They are secreted by a variety of mammalian cells and even different plants. Exosomes are of great interest as a new therapeutic approach due to their stability, ability to be transported throughout the body, paracrine and endocrine effects, as well as the ability to carry various compounds and drugs to target cells. Aim In this review, we have discussed the characteristics of exosomes, their cellular sources, and their therapeutic effects on wrinkles, skin aging, and rejuvenation and hair regrowth.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Aghajani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vosoughi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Sharif
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Ghahremanzadeh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mokhtari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
XiaoMing X, Yan C, JiaMing G, LiTao L, LiJuan Z, Ying S, Lu Y, Qian S, Jian D. Human umbilical cord mesenchymal stem cells combined with porcine small intestinal submucosa promote the healing of full-thickness skin injury in SD rats. Future Sci OA 2024; 10:FSO955. [PMID: 38817375 PMCID: PMC11137796 DOI: 10.2144/fsoa-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Aim: To assess the therapeutic potential of human umbilical cord mesenchymal stem cells (hUCMSCs) combined with porcine small intestinal submucosa (SIS) on full-thickness skin injuries in rats. Methods: We established full-thickness skin injury models in Sprague-Dawley rats, dividing them into blank control, SIS, hUCMSCs and hUCMSCs combined with SIS. We monitored wound healing, scores and area, and analyzed inflammatory cells, microvessel density and collagen fibers after 12 days. Results: The blank group showed no healing, forming a scar of 0.6 × 0.5 cm2, while SIS and hUCMSCs groups exhibited incomplete healing with 0.4 × 0.5 cm2 scabs. Wound healing was significantly better in the hUCMSCs combined with the SIS group. Conclusion: Local application of hUCMSCs combined with SIS enhances full-thickness skin injury wound healing in rats.
Collapse
Affiliation(s)
- Xu XiaoMing
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Chen Yan
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Gu JiaMing
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Liang LiTao
- Department of Obstetrics, The Second Affiliated Hospital of Kunming Medical University,Kunming,Yunnan, 650101, China
| | - Zhang LiJuan
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital, Kunming, Yunnan, 650118, China
| | - Song Ying
- Department of Obstetrics, Kunming Maternal & Child Health Hospital, Kunming, Yunnan, 650011, China
| | - Yuan Lu
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Song Qian
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| | - Dong Jian
- Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital/Yunnan Cellular Therapy & Quality Control System Engineering Research Center, Kunming, Yunnan, 650118, China
| |
Collapse
|
12
|
Wang M, Zhao J, Li J, Meng M, Zhu M. Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring. Stem Cell Res Ther 2024; 15:137. [PMID: 38735979 PMCID: PMC11089711 DOI: 10.1186/s13287-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Meng
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
13
|
Klimczak A. Mesenchymal Stem/Progenitor Cells and Their Derivates in Tissue Regeneration-Part II. Int J Mol Sci 2024; 25:4937. [PMID: 38732156 PMCID: PMC11084558 DOI: 10.3390/ijms25094937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
During the last three decades, mesenchymal stem/stromal cells (MSCs) were extensively studied, and are mainly considered within the setting of their regenerative and immunomodulatory properties in tissue regeneration [...].
Collapse
Affiliation(s)
- Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
14
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
15
|
Li X, Zhang D, Yu Y, Wang L, Zhao M. Umbilical cord-derived mesenchymal stem cell secretome promotes skin regeneration and rejuvenation: From mechanism to therapeutics. Cell Prolif 2024; 57:e13586. [PMID: 38148579 PMCID: PMC10984109 DOI: 10.1111/cpr.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
How to effectively repair cutaneous wounds and promote skin rejuvenation has always been a challenging issue for clinical medicine and medical aesthetics. Current conventional medicines exhibit several drawbacks, including limited therapeutic effects, prolonged treatment periods, and high costs. As a novel cell-free therapy, the umbilical cord-derived mesenchymal stem cell (UCMSC) secretome may offer a promising approach for skin regeneration and rejuvenation. The UCMSC secretome is a collection of all proteins secreted by mesenchymal stem cells, including conditioned media, exosomes, and other substances. The UCMSC secretome has numerous abilities to accelerate acute wound healing, including high fibroblast and keratinocyte proliferative activity, pro-angiogenesis, anti-inflammation, anti-fibrosis, and anti-oxidative stress. Its impact on the four stages of wound healing is manifested by inducing the haemostasis phase, inhibiting the inflammation phase, promoting the proliferation phase, and regulating the remodelling phase. Furthermore, it is highly effective in the treatment of chronic wounds, alopecia, aging, and skin homeostasis disturbance. This review focuses on the clinical therapies and application prospects of the UCMSC secretome, encompassing its source, culture, separation, identification, storage, and pretreatment. Additionally, a discussion on the dosage, administration route, efficacy, and biosafety in the clinical situation is presented. This review aims to provide scientific support for the mechanistic investigation and clinical utilisation of the UCMSC secretome in wound healing and skin rejuvenation.
Collapse
Affiliation(s)
- Xixian Li
- Department of Plastic SurgeryThe Second Hospital of Dalian Medical UniversityDalianLiaoningChina
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianLiaoningChina
| | - Dan Zhang
- Department of Plastic SurgeryThe Second Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Yang Yu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianLiaoningChina
| | - Liang Wang
- Research and Teaching Department of Comparative MedicineDalian Medical UniversityDalianLiaoningChina
| | - Muxin Zhao
- Department of Plastic SurgeryThe Second Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
16
|
Beauregard MA, Bedford GC, Brenner DA, Sanchez Solis LD, Nishiguchi T, Abhimanyu, Longlax SC, Mahata B, Veiseh O, Wenzel PL, DiNardo AR, Hilton IB, Diehl MR. Persistent tailoring of MSC activation through genetic priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578489. [PMID: 38370626 PMCID: PMC10871228 DOI: 10.1101/2024.02.01.578489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a 'genetic priming' method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor IRF1 (interferon response factor 1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFNγ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFNγ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.
Collapse
Affiliation(s)
| | - Guy C. Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael R. Diehl
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
17
|
Chien WY, Huang HM, Kang YN, Chen KH, Chen C. Stem cell-derived conditioned medium for alopecia: A systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2024; 88:182-192. [PMID: 37983981 DOI: 10.1016/j.bjps.2023.10.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Alopecia is a common and distressing medical condition that has been related to psychiatric disorders. Stem cell-derived conditioned medium (CM), a novel therapy for hair regeneration, has shown effectiveness in several trials. METHODS This meta-analysis aims to explore the effectiveness of stem cell-derived CM in improving hair growth for patients of alopecia. We prospectively registered this systematic review and meta-analysis in PROSPERO (CRD42023410249). Clinical trials that the enrolled participants suffering from alopecia applied stem cell-derived CM were included. We calculated the mean and standard deviation for the hair density and thickness. RESULTS Ten clinical trials were included in our analysis. On the basis of eight clinical trials (n = 221), our pooled results indicate that stem cell-derived CM is effective in increasing hair density (mean difference [MD]: 14.93, confidence interval [95% CI]: 10.20-19.67, p < 0.0001) and thickness (MD: 18.67, 95% CI: 2.75-34.59, p < 0.0001) (μm) in patients with alopecia. Moreover, our findings suggest that longer treatment duration is associated with significantly greater improvement than shorter treatment duration (p = 0.02). Three of the included studies were randomized controlled trials (RCTs), and when we specifically analyzed these RCTs; statistical significance could also be observed in terms of hair density (MD: 9.23, 95% CI: 1.79-16.68, p < 0.00001). KEY MESSAGES Stem cell-derived conditioned medium can effectively increase hair density and thickness for alopecia, and there is no difference between each method (topical application, microneedling, or injection).
Collapse
Affiliation(s)
- Wei-Ying Chien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Min Huang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-No Kang
- Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kee-Hsin Chen
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei City 11031, Taiwan; Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan; Research Center in Nursing Clinical Practice, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Evidence-Based Knowledge Translation Center, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor 47500, Malaysia
| | - Chiehfeng Chen
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Sohrabi K, Ahmadi H, Amini A, Ahrabi B, Mostafavinia A, Omidi H, Mirzaei M, Fadaei Fathabady F, Fridoni M, Rahmannia M, Chien S, Bayat M. Promising improvement in infected Wound Healing in Type two Diabetic rats by Combined effects of conditioned medium of human adipose-derived stem cells plus Photobiomodulation. Lab Anim Res 2023; 39:29. [PMID: 37964303 PMCID: PMC10648630 DOI: 10.1186/s42826-023-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND We aimed to examine the accompanying and solo impacts of conditioned medium of human adipose-derived stem cells (h-ASC-COM) and photobiomodulation (PBM) on the maturation stage of an ischemic infected delayed-healing wound model (IIDHWM) of rats with type 2 diabetes (TIIDM). RESULTS Outcomes of the wound closure ratio (WCR) results, tensiometrical microbiological, and stereological assessment followed almost identical patterns. While the outcomes of h-ASC-COM + PBM, PBM only, and h-ASC-COM only regimes were significantly better for all evaluated methods than those of group 1(all, p < 0.001), PBM alone and h-ASC-COM + PBM therapy achieved superior results than h-ASC-COM only (ranged from p = 0.05 to p < 0.001). In terms of tensiometrical and stereological examinations, the results of h-ASC-COM + PBM experienced better results than the PBM only (all, p < 0.001). CONCLUSIONS h-ASC-COM + PBM, PBM, and h-ASC-COM cures expressively accelerated the maturation stage in the wound healing process of IIDHWM with MRSA in TIIDM rats by diminishing the inflammatory reaction, and the microbial flora of MRSA; and increasing wound strength, WCR, number of fibroblasts, and new blood vessels. While the h-ASC-COM + PBM and PBM were more suitable than the effect of h-ASC-COM, the results of h-ASC-COM + PBM were superior to PBM only.
Collapse
Affiliation(s)
- Kaysan Sohrabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Rahmannia
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Hani R, Khayat L, Rahman AA, Alaaeddine N. Effect of stem cell secretome in skin rejuvenation: a narrative review. Mol Biol Rep 2023; 50:7745-7758. [PMID: 37452901 DOI: 10.1007/s11033-023-08622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Cutaneous aging is an inevitable biological process that develops over time due to cumulative cellular and molecular changes caused by exposure to intrinsic (chronological aging) and extrinsic (photo-aging) factors on the skin. Skin aging is characterized by a decline in the body's capability to sustain senescence, dermal cell apoptosis, and homeostasis. Stem cell secretions (secretome) are defined as the total set of dynamically overlapping paracrine soluble growth factors, cytokines, chemokines, angiogenic factors, extracellular matrix proteins, and antimicrobial peptides known to be responsible for tissue rejuvenation, regeneration, homeostasis, and immunomodulation. METHODS In this review, we summarized the molecular and regulatory mechanism of the secretome in preventing the skin aging process, as well as its capacity in inducing skin rejuvenation. Furthermore, we illustrated secretome efficiency as an anti-aging therapeutic strategy based on in vitro and in vivo published studies. RESULTS In all reviewed publications, the secretome has been proven to be the most effective treatment for aged skin, capable of reversing the aging process through the action of cytokines, growth factors, and collagen, which are its primary components. The reported mechanism of action involves modulating the signaling pathways of aging and replenishing the skin with collagen, fibronectin, and elastin, ultimately resulting in skin renewal and rejuvenation. CONCLUSION In conclusion, compared to available treatments, the secretome shows great promise as an anti-aging therapy.
Collapse
Affiliation(s)
- Rita Hani
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | | | | | | |
Collapse
|
20
|
Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F. Gingival Mesenchymal Stem Cells Metabolite Decreasing TRAP, NFATc1, and Sclerostin Expression in LPS-Associated Inflammatory Osteolysis In Vivo. Eur J Dent 2023; 17:881-888. [PMID: 35728613 PMCID: PMC10569879 DOI: 10.1055/s-0042-1748529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Bone is a dynamic tissue that undergoes remodeling. During bone remodeling, there are transcription factors such as nuclear factor-activated T cells-1 (NFATc1), sclerostin, and tartrate-resistant acid phosphatase (TRAP) that are released for bone resorption. Metabolite from gingival mesenchymal stem cells (GMSCs) has the ability to activate proliferation, migration, immunomodulation, and tissue regeneration of bone cells and tissues. Furthermore, the aim of this study is to investigate the metabolite of GMSCs' effect on expression of NFATc1, TRAP, and sclerostin in calvaria bone resorption of Wistar rats. MATERIALS AND METHODS Twenty male healthy Wistar rats (Rattus norvegicus), 1 to 2 months old, 250 to 300 g body were divided into four groups, namely group 1 (G1): 100 µg phosphate-buffered saline day 1 to 7; group 2 (G2): 100 μg lipopolysaccharide (LPS) day 1 to 7; group 3 (G3): 100 μg LPS + 100 μg GMSCs metabolite day 1 to 7; and group 4 (G4): 100 μg GMSCs metabolite day 1 to 7. Escherichia coli LPS was used to induce inflammatory osteolysis on the calvaria with subcutaneous injection. GMSCs metabolite was collected after passage 4 to 5, then injected subcutaneously on the calvaria. All samples were sacrificed on the day 8 through cervical dislocation. The expression of TRAP, NFATc1, and sclerostin of osteoclast in the calvaria was observed with 1,000× magnification. STATISTICAL ANALYSIS One-way analysis of variance and Tukey honest significant different were conducted to analyze differences between groups (p < 0.05). RESULTS The administration of GMSCs metabolite can significantly decrease TRAP, NFATc1, and sclerostin expression (p < 0.05) in LPS-associated inflammatory osteolysis calvaria in Wistar rats (R. norvegicus). There were significantly different TRAP, NFATc1, and sclerostin expressions between groups (p < 0.05). CONCLUSION GMSCs metabolite decrease TRAP, NFATc1, and sclerostin expression in LPS-associated osteolysis calvaria in Wistar rats (R. norvegicus) as documented immunohistochemically.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nastiti Faradilla Ramadhani
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fianza Rezkita
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Andari Sarasati
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Bilqis Inayatillah
- Department of Basic Medical of Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
21
|
An S, Anwar K, Ashraf M, Lee H, Jung R, Koganti R, Ghassemi M, Djalilian AR. Wound-Healing Effects of Mesenchymal Stromal Cell Secretome in the Cornea and the Role of Exosomes. Pharmaceutics 2023; 15:1486. [PMID: 37242728 PMCID: PMC10221647 DOI: 10.3390/pharmaceutics15051486] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) and their secreted factors have been shown to have immunomodulatory and regenerative effects. In this study, we investigated human bone-marrow-derived MSC secretome (MSC-S) for the treatment of corneal epithelial wounds. Specifically, we evaluated the role of MSC extracellular vesicles (EV)/exosomes in mediating the wound-healing effects of the MSC-S. In vitro studies using human corneal epithelial cells showed that MSC-CM increased cell proliferation in HCEC and HCLE cells, while EV-depleted MSC-CM showed lower cell proliferation in both cell lines compared to the MSC-CM group. In vitro and in vivo experiments revealed that 1X MSC-S consistently promoted wound healing more effectively than 0.5X MSC-S, and MSC-CM promoted wound healing in a dose-dependent manner, while exosome deprivation delayed wound healing. We further evaluated the incubation period of MSC-CM on corneal wound healing and showed that MSC-S collected for 72 h is more effective than MSC-S collected for 48 h. Finally, we evaluated the stability of MSC-S under different storage conditions and found that after one cycle of freeze-thawing, MSC-S is stable at 4 °C for up to 4 weeks. Collectively, we identified the following: (i) MSC-EV/Exo as the active ingredient in MSC-S that mediates the wound-healing effects in the corneal epithelium, providing a measure to optimize its dosing for a potential clinical product; (ii) Treatment with EV/Exo-containing MSC-S resulted in an improved corneal barrier and decreased corneal haze/edema relative to EV/Exo-depleted MSC-S; (iii) The stability of MSC-CM for up to 4 weeks showed that the regular storage condition did not significantly impact its stability and therapeutic functions.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Khandaker Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Mohammadjavad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hyungjo Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| |
Collapse
|
22
|
Serafini MA, Sirena DH, da Silveira ABT, Franco-da-Silva M, Aubin MR, Garcez TNA, Araújo A, dos Santos Pereira F, Hoogduijn MJ, da Costa Gonçalves F, Paz AH. Mesenchymal stromal cell-derived membrane particles: A novel cell-free therapy for inflammatory bowel diseases. Int Immunopharmacol 2023; 118:110076. [PMID: 37030123 DOI: 10.1016/j.intimp.2023.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis, are chronic and idiopathic inflammations of the gastrointestinal tract. A disruption of the epithelial barrier and an imbalance between Th1 and Th2 subsets are associated with the onset and progression of these diseases. Mesenchymal stromal cells (MSC) are a promising therapy for IBD. However, cell-tracking studies have shown that intravenously infused MSC localize to the lungs and present short-term survival. To reduce practical complexities arising from living cells, we generated membrane particles (MP) from MSC membranes, which possess some of the immunomodulatory properties of MSC. This study investigated the effect of MSC-derived MP and conditioned media (CM) as cell-free therapies in the dextran sulfate sodium (DSS)-induced colitis model. Acute colitis was induced in C57BL/6 mice by oral administration of 2% DSS in drinking water ad libitum from days 0 to 7. Mice were treated with MP, CM, or living MSC on days 2 and 5. Our findings revealed that MP, CM, and living MSC ameliorated DSS-induced colitis by reducing colonic inflammation, the loss of colonic goblet cells, and intestinal mucosa permeability, preventing apoptosis of damaged colonic cells and balancing Th1 and Th2 activity. Therefore, MSC-derived MP have high therapeutic potential for treating IBD, overcoming the deficiencies of living MSC therapy, and opening novel frontiers in inflammatory diseases medicine.
Collapse
|
23
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
24
|
Yusharyahya SN, Japranata VV, Sitohang IBS, Legiawati L, Novianto E, Suseno LS, Rachmani K. A Comparative Study on Adipose-Derived Mesenchymal Stem Cells Secretome Delivery Using Microneedling and Fractional CO 2 Laser for Facial Skin Rejuvenation. Clin Cosmet Investig Dermatol 2023; 16:387-395. [PMID: 36798539 PMCID: PMC9926994 DOI: 10.2147/ccid.s401839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Background The efficacy of adipose-derived mesenchymal stem cells (ADMSCs) secretome for skin aging has been established, yet no studies hitherto directly investigated the best administration method for such purpose. Purpose We aimed to compare microneedling (MN) versus fractional CO2 laser (FL) as methods of delivery for ADMSCs secretome in the treatment of aging skin. Patients and Methods A single-blind, randomized split-face clinical trial was conducted on 30 Indonesian women (aged 35-59 years old) with signs of facial cutaneous senescence. Their initial aging status was assessed by dermoscopy photoaging scale (DPAS) and Janus-III measurement system. In the second and fourth weeks, all participants were treated with both MN and FL, followed by the application of a four-fold concentrated ADMSC secretome. The assignment of which side of the face received MN or FL was done by computer-based randomization. Skin parameters were reevaluated on the fourth and sixth weeks, along with patient satisfaction, level of comfort, preference for administration techniques, and also adverse events experienced during the study. Appropriate statistical analyses were subsequently performed at a significance level of 0.05. Results Significant improvements in total DPAS and wrinkles were found in the MN and FL groups at the end of the trial. In contrast, no statistical differences in all parameters were observed between groups in the fourth and sixth weeks. FL scored higher than MN for satisfaction and preference, but lower in terms of comfort. Pain, burning sensation, and itch were the side effects experienced by subjects upon treatment. Two patients had prolonged reddish skin succeeding FL treatment, which relieved with moisturizer application. Conclusion Both MN and FL yielded comparable results for improving several skin aging features. However, subjective preference for ADMSCs secretome administration method may differ when considering satisfaction, comfort, and possible adverse events.
Collapse
Affiliation(s)
- Shannaz Nadia Yusharyahya
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia,Correspondence: Shannaz Nadia Yusharyahya, Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jalan Diponegoro Nomor 71, Kenari, Senen, Jakarta Pusat, 10430, Indonesia, Tel/Fax +62 21 31935383, Email
| | | | - Irma Bernadette S Sitohang
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia
| | - Lili Legiawati
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia
| | - Endi Novianto
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia
| | - Lis Surachmiati Suseno
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia
| | - Karin Rachmani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta Pusat, Indonesia
| |
Collapse
|
25
|
Katahira Y, Murakami F, Inoue S, Miyakawa S, Sakamoto E, Furusaka Y, Watanabe A, Sekine A, Kuroda M, Hasegawa H, Mizoguchi I, Yoshimoto T. Protective effects of conditioned media of immortalized stem cells from human exfoliated deciduous teeth on pressure ulcer formation. Front Immunol 2023; 13:1010700. [PMID: 36713359 PMCID: PMC9881429 DOI: 10.3389/fimmu.2022.1010700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Pressure ulcers (PUs) are increasing with aging worldwide, but there is no effective causal therapy. Although mesenchymal stem cells (MSCs) promote cutaneous wound healing, the effects of the conditioned medium (CM) of MSCs on cutaneous PU formation induced by ischemia-reperfusion injury have been poorly investigated. To address this issue, herein, we first established an immortalized stem cell line from human exfoliated deciduous teeth (SHED). This cell line was revealed to have superior characteristics in that it grows infinitely and vigorously, and stably and consistently secretes a variety of cytokines. Using the CM obtained from the immortalized SHED cell line, we investigated the therapeutic potential on a cutaneous ischemia-reperfusion mouse model for PU formation using two magnetic plates. This is the first study to show that CM from immortalized SHEDs exerts therapeutic effects on PU formation by promoting angiogenesis and oxidative stress resistance through vascular endothelial growth factor and hepatocyte growth factor. Thus, the CM of MSCs has potent therapeutic effects, whereas these therapies have not been implemented in human medicine. To try to meet the regulatory requirements for manufacturing and quality control as much as possible, it is necessary to produce CM that is consistently safe and effective. The immortalization of stem cells could be one of the breakthroughs to meet the regulatory requirements and consequently open up a novel avenue to create a novel type of cell-free regenerative medicine, although further investigation into the quality control is warranted.
Collapse
Affiliation(s)
- Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan,*Correspondence: Takayuki Yoshimoto,
| |
Collapse
|
26
|
Yang J, Xiao M, Ma K, Li H, Ran M, Yang S, Yang Y, Fu X, Yang S. Therapeutic effects of mesenchymal stem cells and their derivatives in common skin inflammatory diseases: Atopic dermatitis and psoriasis. Front Immunol 2023; 14:1092668. [PMID: 36891306 PMCID: PMC9986293 DOI: 10.3389/fimmu.2023.1092668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic skin inflammatory diseases including atopic dermatitis (AD) and psoriasis have been considered uncontrolled inflammatory responses, which have usually troubled patients around the world. Moreover, the recent method to treat AD and psoriasis has been based on the inhibition, not regulation, of the abnormal inflammatory response, which can induce a number of side effects and drug resistance in long-term treatment. Mesenchymal stem/stromal cells (MSCs) and their derivatives have been widely used in immune diseases based on their regeneration, differentiation, and immunomodulation with few adverse effects, which makes MSCs a promising treatment for chronic skin inflammatory diseases. As a result, in this review, we aim to systematically discuss the therapeutic effects of various resources of MSCs, the application of preconditioning MSCs and engineering extracellular vesicles (EVs) in AD and psoriasis, and the clinical evaluation of the administration of MSCs and their derivatives, which can provide a comprehensive vision for the application of MSCs and their derivatives in future research and clinical treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Minglu Xiao
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Hongyu Li
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Shuxu Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| | - Siming Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China.,Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
27
|
Secretome of human umbilical cord mesenchymal stem cell maintains skin homeostasis by regulating multiple skin physiological function. Cell Tissue Res 2023; 391:111-125. [PMID: 36241740 DOI: 10.1007/s00441-022-03697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023]
Abstract
Skin is the largest organ in the body and the first defense to resist various diseases and external stimuli that easily cause infection and inflammation. Aseptic inflammation, barrier damage, and foreign aid pressure induce the destruction and damage to the skin microenvironment. Subsequently, it destroys the skin's physiological function, leading to the maintenance and circulation of steady-state imbalance and aggravating the process of skin disorders. Our study evaluated the therapeutic potential of the secretome of human umbilical cord mesenchymal stem cells (UC-CM) for dermatological diseases in adult human skin cells, ex vivo skin tissue, and a 3D skin model. Our data suggested several advantages of UC-CM due to (1) their low cytotoxicity and sensitization properties; (2) their anti-inflammatory capacity for treating inflammatory chronic cutaneous diseases; (3) their enhanced capacity of the skin barrier for treating abnormal barrier metabolism; and (4) their positive impact on restoring skin homeostasis due to effective regulation ability of skin physiological function including cell apoptosis, detoxification, and anti-aging. We thus envisage that the possibility of harnessing the therapeutic potential of UC-CM might benefit patients suffering from inflammatory skin disorders such as atopic dermatitis, acne, and psoriasis.
Collapse
|
28
|
Silveira BM, Ribeiro TO, Freitas RS, Carreira ACO, Gonçalves MS, Sogayar M, Meyer R, Birbrair A, Fortuna V. Secretome from human adipose-derived mesenchymal stem cells promotes blood vessel formation and pericyte coverage in experimental skin repair. PLoS One 2022; 17:e0277863. [PMID: 36534643 PMCID: PMC9762598 DOI: 10.1371/journal.pone.0277863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Human adipose tissue-derived stem cells (hASC) secretome display various therapeutically relevant effects in regenerative medicine, such as induction of angiogenesis and tissue repair. The benefits of hASC secretome are primarily orchestrated by trophic factors that mediate autocrine and paracrine effects in host cells. However, the composition and the innate characteristics of hASC secretome can be highly variable depending on the culture conditions. Here, we evaluated the combined effect of serum-free media and hypoxia preconditioning on the hASCs secretome composition and biological effects on angiogenesis and wound healing. The hASCs were cultured in serum-free media under normoxic (NCM) or hypoxic (HCM) preconditioning. The proteomic profile showed that pro- and anti-antiangiogenic factors were detected in NCM and HCM secretomes. In vitro studies demonstrated that hASCs secretomes enhanced endothelial proliferation, survival, migration, in vitro tube formation, and in vivo Matrigel plug angiogenesis. In a full-thickness skin-wound mouse model, injection of either NCM or HCM significantly accelerated the wound healing. Finally, hASC secretomes were potent in increasing endothelial density and vascular coverage of resident pericytes expressing NG2 and nestin to the lesion site, potentially contributing to blood vessel maturation. Overall, our data suggest that serum-free media or hypoxic preconditioning enhances the vascular regenerative effects of hASC secretome in a preclinical wound healing model.
Collapse
Affiliation(s)
- Brysa M. Silveira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Tiago O. Ribeiro
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Railane S. Freitas
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Ana C. O. Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marilda Souza Gonçalves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Mari Sogayar
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, São Paulo, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Roberto Meyer
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, United States of America
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
- * E-mail:
| |
Collapse
|
29
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
30
|
Hua C, Chen S, Cheng H. Therapeutic potential of mesenchymal stem cells for refractory inflammatory and immune skin diseases. Hum Vaccin Immunother 2022; 18:2144667. [PMID: 36382475 PMCID: PMC9746473 DOI: 10.1080/21645515.2022.2144667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory and immunological skin diseases such as psoriasis, systemic sclerosis, dermatomyositis and atopic dermatitis, whose abnormal skin manifestations not only affected life quality but also caused social discrimination, have been wildly concerned. Complex variables such as hereditary predisposition, racial differences, age and gender can influence the prevalence and therapeutic options. The population of patients with unsatisfactory curative effects under current therapies is growing, it's advisable to seek novel and advanced therapies that are less likely to cause systemic damage. Mesenchymal stem cells (MSCs) have been proven with therapeutic benefits in tissue regeneration, self-renewal and differentiation abilities when treating refractory skin disorders in preclinical and clinical studies. Here we highlighted the immune modulation and inflammation suppression of MSCs in skin diseases, summarized current studies, research progress and related clinical trials, hoping to strengthen the confidence of promising MSCs therapy in future clinical application.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Lin TJ, Huang YL, Kang YN, Chen C. Effectiveness of Topical Conditioned Medium of Stem Cells in Facial Skin Nonsurgical Resurfacing Modalities for Antiaging: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Aesthetic Plast Surg 2022; 47:799-807. [PMID: 36396862 DOI: 10.1007/s00266-022-03168-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Facial skin nonsurgical resurfacing modalities, including laser, chemical peeling, and microneedling, have become common due to increasing public concern about skin aging. The potential effect of stem cell conditioned medium (CM) for antiaging has been reported in recent years, and such medium may be able to improve the efficacy of resurfacing modalities. This study investigated the efficacy of topical CM combined with resurfacing in comparison with resurfacing alone. We searched the PubMed, Embase, and Cochrane Library databases for randomized controlled trials (RCTs). We used the Cochrane risk-of-bias tool (version 2) to assess the risk of bias of the included studies and Review Manager (version 5.4) for data analysis. Means and standard deviations of outcomes, namely wrinkle, pigmentation, pore, and overall improvement, were extracted. After screening, we included five RCTs in the analysis, four of which were quantitatively analyzed. The result revealed that stem cell CM significantly reduced wrinkles (P = 0.0006), pigmentation (P = 0.004), and pores (P = 0.01) and improved overall skin condition (P < 0.0001). In summary, we suggest that stem cell CM is a safe treatment that can enhance the efficacy of facial skin nonsurgical resurfacing modalities.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Yi-No Kang
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
- Evidence-Based Medicine Center, Wan Fang Hospital, Medical University Hospital, Taipei, Taiwan.
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, 111 sec. 3 Xinlong Road, Taipei, 116, Taiwan.
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Chiehfeng Chen
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
- Evidence-Based Medicine Center, Wan Fang Hospital, Medical University Hospital, Taipei, Taiwan.
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Potential of stem cells for treating infected Diabetic Foot Wounds and Ulcers: a systematic review. Mol Biol Rep 2022; 49:10925-10934. [PMID: 36008608 DOI: 10.1007/s11033-022-07721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023]
Abstract
Infected diabetic foot ulcers (iDFUs) cause great concern, as they generally heal poorly and are precursive of diabetic-related foot amputation and even death. Scientists have tested various techniques in attempts to ascertain the best treatment for iDFUs; however, the results have remained inconclusive. Stem cell therapy (SCT) appears to improve iDFU through its antimicrobial impacts, yet cogent information regarding the repair of iDFUs with SCT is lacking. Herein, published articles are evaluated to report coherent information about the antimicrobial effects of SCT on the repair of iDFUs in diabetic animals and humans. In this systematic review, we searched the Scopus, Medline, Google Scholar, and Web of Science databases for relevant full-text English language articles published from 2000 to 2022 that described stem cell antimicrobial treatments, infected diabetic wounds, or ulcers. Ultimately, six preclinical and five clinical studies pertaining to the effectiveness of SCT on healing infected diabetic wounds or ulcers were selected. Some of the human studies confirmed that SCT is a promising therapy for diabetic wounds and ulcers. Notably, more controlled studies performed on animal models revealed that stem cells combined with a biostimulator such as photobiomodulation decreased colony forming units and hastened healing in infected diabetic wounds. Moreover, stem cells alone had lower therapeutic impact than when combined with a biostimulant.
Collapse
|
33
|
Harman RM, Churchill KA, Parmar S, Van de Walle GR. Mesenchymal stromal cells isolated from chicken peripheral blood secrete bioactive factors with antimicrobial and regenerative properties. Front Vet Sci 2022; 9:949836. [PMID: 36090169 PMCID: PMC9449329 DOI: 10.3389/fvets.2022.949836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent progenitor cells that have been isolated from various tissue sources of many species, primarily mammals. Generally, these cells proliferate extensively in culture and have been shown to secrete bioactive factors that contribute to healing processes by regulating inflammation, modulating immune responses, inhibiting bacterial growth, and promoting tissue regeneration. The present study reports on the isolation and characterization of MSCs from the peripheral blood (PB) of chickens. Chicken PBMSCs were characterized based on their trilineage differentiation potential and gene and protein expression of MSC-specific cell surface markers. To determine functionality, conditioned medium (CM), which contains all bioactive factors secreted by MSCs, was collected from chicken PBMSCs, and used in in vitro antimicrobial, migration, and angiogenesis assays. Chicken PBMSC CM was found to (i) inhibit the growth of planktonic Staphylococcus aureus (S. aureus), and even more significantly the methicillin-resistant S. aureus (MRSA), (ii) decrease adhesion and promote migration of fibroblasts, and (iii) support endothelial cell tube formation. Collectively, these data indicate that chicken PBMSCs secrete bioactive factors with antimicrobial and regenerative properties, and as such, provide a novel source of cell-based therapies for the poultry industry.
Collapse
|
34
|
Abdel Aziz I, Maver L, Giannasi C, Niada S, Brini AT, Antognazza MR. Polythiophene-mediated light modulation of membrane potential and calcium signalling in human adipose-derived stem/stromal cells. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:9823-9833. [PMID: 36277082 PMCID: PMC9487879 DOI: 10.1039/d2tc01426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
Recent progress in the fields of regenerative medicine and tissue engineering has been strongly fostered both by the investigation of crucial cues, able to trigger the regeneration of damaged tissues, and by the development of ad hoc functional materials, capable of selectively (re-)activating relevant physiological pathways. In parallel to the successful realization of biochemical cues and the optimization of delivery protocols, the use of biophysical stimuli has been emerging as an alternative, highly effective strategy. Techniques based on electrical, magnetic and mechanical stimulation have been reported to efficiently direct differentiation of stem cells and modulate cell physiology at different developmental stages. In this framework, the use of optical stimulation represents a valuable approach, possibly overcoming current limitations of chemical cues, like limited spatial and temporal resolution and poor control over the extracellular environment. Surprisingly, the effects of light on the physiological properties (light toxicity, cell membrane potential, and cell ionic trafficking) of undifferentiated cells, as well as on their differentiation pathways, were investigated to a very limited extent and rarely quantified in a systematic way. In this work, we aim at clarifying the effects of optical excitation on the physiological behaviour of undifferentiated human adipose-derived stem cells (hASC), cultured on top of a light-sensitive conjugated polymer, region-regular poly-3-hexyl-thiophene (P3HT). Interestingly, we observe statistically significant modulation of the cell membrane potential, as well as noticeable effects on intracellular calcium signalling, triggered by P3HT excitation upon green light stimuli. Possible mechanisms involved in the signal transduction pathways are considered and critically discussed. The capability to modulate the physiological response of hASC upon photoexcitation, in a highly controlled and selective manner, provides a promptly available and non invasive diagnostic tool, thus contributing to the understanding of the complex machinery behind stem cells and material interfaces. Moreover, it may open the route to novel techniques to drive the differentiation path with unprecedented versatility and operational easiness.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip.to di Fisica, P.zza L. da Vinci 32 20133 Milano Italy
| | - Leonardo Maver
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip.to di Fisica, P.zza L. da Vinci 32 20133 Milano Italy
| | - Chiara Giannasi
- University of Milan, Department of Biomedical, Surgical and Dental Sciences, Via Vanvitelli 32 20129 Milano Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Anna T Brini
- University of Milan, Department of Biomedical, Surgical and Dental Sciences, Via Vanvitelli 32 20129 Milano Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
| |
Collapse
|
35
|
Tan KX, Chang T, Lin XL. Secretomes as an emerging class of bioactive ingredients for enhanced cosmeceutical applications. Exp Dermatol 2022; 31:674-688. [PMID: 35338666 DOI: 10.1111/exd.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Skin aging is predominantly caused by either intrinsic or extrinsic factors, leading to undesirable skin features. Advancements in both molecular and cellular fields have created possibilities in developing novel stem cell-derived active ingredients for cosmeceutical applications and the beauty industry. Mesenchymal stromal cell (MSC)-derived secretomes or conditioned media hold great promise for advancing skin repair and regeneration due to the presence of varying cytokines. These cytokines signal our cells and trigger biological mechanisms associated with anti-inflammatory, antioxidant, anti-aging, proliferative, and immunomodulatory effects. In this review, we discuss the potential of MSC secretomes as novel biomaterials for skincare and rejuvenation by illustrating their mechanism of action related to wound healing, anti-aging, and whitening properties. The advantages and disadvantages of secretomes are compared to both plant-based and animal-derived extracts. In addition, this paper reviews the current safety standards, regulations, market products and research work related to the cosmeceutical applications of secretomes along with strategies to maintain and improve the therapeutic efficacy and production of secretomes. The future outlook of beauty industry is also presented. Lastly, we highlight significant challenges to be addressed for the clinical realization of MSC secretomes-based skin therapies as well as providing perspectives for the future direction of secretomes.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Trixie Chang
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Xiang-Liang Lin
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| |
Collapse
|
36
|
Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, Fauzi MB, Maarof M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J Tissue Eng 2022; 13:20417314221114273. [PMID: 35923177 PMCID: PMC9340325 DOI: 10.1177/20417314221114273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Wound represents a significant socioeconomic burden for both affected individuals and as a whole healthcare system. Accordingly, stem cells have garnered attention due to their differentiation capacity and ability to aid tissue regeneration by releasing biologically active molecules, found in the cells' cultivated medium which known as conditioned medium (CM) or secretomes. This acellular approach provides a huge advantage over conventional treatment options, which are mainly used cellular treatment at wound closure. Interestingly, the secretomes contained the cell-secreted proteins such as growth factors, cytokines, chemokines, extracellular matrix (ECM), and small molecules including metabolites, microvesicles, and exosomes. This review aims to provide a general view on secretomes and how it is proven to have great potential in accelerating wound healing. Utilizing the use of secretomes with its secreted proteins and suitable biomaterials for fabrications of acellular skin substitutes can be promising in treating skin loss and accelerate the healing process.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | | | - Muhd Aliff Iqmal Badrul Hisham
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Nithiaraj Sunthar Raj
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| |
Collapse
|
37
|
Wermuth DP, Paim TC, Bertaco I, Zanatelli C, Naasani LIS, Slaviero M, Driemeier D, Tavares AC, Martins V, Escobar CF, Dos Santos LAL, Schaeffer L, Wink MR. Mechanical properties, in vitro and in vivo biocompatibility analysis of pure iron porous implant produced by metal injection molding: A new eco-friendly feedstock from natural rubber (Hevea brasiliensis). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112532. [PMID: 34857310 DOI: 10.1016/j.msec.2021.112532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
Abstract
Metal injection molding (MIM) has become an important manufacturing technology for biodegradable medical devices. As a biodegradable metal, pure iron is a promising biomaterial due to its mechanical properties and biocompatibility. In light of this, we performed the first study that manufactured and evaluated the in vitro and in vivo biocompatibility of samples of iron porous implants produced by MIM with a new eco-friendly feedstock from natural rubber (Hevea brasiliensis), a promisor binder that provides elastic property in the green parts. The iron samples were submitted to tests to determine density, microhardness, hardness, yield strength, and stretching. The biocompatibility of the samples was studied in vitro with adipose-derived mesenchymal stromal cells (ADSCs) and erythrocytes, and in vivo on a preclinical model with Wistar rats, testing the iron samples after subcutaneous implant. Results showed that the manufactured samples have adequate physical, and mechanical characteristics to biomedical devices and they are cytocompatible with ADSCs, hemocompatible and biocompatible with Wistars rats. Therefore, pure iron produced by MIM can be considered a promising material for biomedical applications.
Collapse
Affiliation(s)
- Diego Pacheco Wermuth
- Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Thaís Casagrande Paim
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Isadora Bertaco
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Carla Zanatelli
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Mônica Slaviero
- Setor de Patologia Veterinária, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, 91540-000 Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, 91540-000 Porto Alegre, RS, Brazil
| | - André Carvalho Tavares
- Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Vinicius Martins
- Laboratório de Metalurgia do Pó, Instituto Federal Sul-rio-grandense Campus Sapucaia do Sul, Av. Copacabana 100, 93216-120 Sapucaia do Sul, RS, Brazil
| | - Camila Ferreira Escobar
- Centro de Ciência e Tecnologia em Energia e Sustentabilidade, Universidade Federal do Recôncavo da Bahia, Av. Centenário 697, 44.085-132 Feira de Santana, BA, Brazil
| | - Luis Alberto Loureiro Dos Santos
- Laboratório de Biomateriais & Cerâmicas Avançadas, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Lirio Schaeffer
- Laboratório de Transformação Mecânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Antimicrobial and Regenerative Effects of Placental Multipotent Mesenchymal Stromal Cell Secretome-Based Chitosan Gel on Infected Burns in Rats. Pharmaceuticals (Basel) 2021; 14:ph14121263. [PMID: 34959663 PMCID: PMC8707738 DOI: 10.3390/ph14121263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background: There is a need for better strategies to promote burn wound healing and prevent infection. The aim of our study was to develop an easy-to-use placental multipotent mesenchymal stromal cell (MMSC) secretome-based chitosan hydrogel (MSC-Ch-gel) and estimate its antimicrobial and regenerative activity in Staphylococcus aureus-infected burn wounds in rats. Methods: Proteomic studies of the MMSC secretome revealed proteins involved in regeneration, angiogenesis, and defence responses. The MMSC secretome was collected from cultured cells and mixed with water-soluble chitosan to prepare the placental MSC-Ch-gel, which was stored in liquid phase at 4 °C. The wounds of rats with established II-IIIa-degree burns were then infected with S. aureus and externally covered with the MSC-Ch-gel. Three additional rat groups were treated with medical Vaseline oil, the antiseptic drug Miramistin®, or the drug Bepanthen® Plus. Skin wound samples were collected 4 and 8 days after burning for further microbiological and histological analysis. Blood samples were also collected for biochemical analysis. Results: Application of the MSC-Ch-gel cleared the wound of microorganisms (S. aureus wasn’t detected in the washings from the burned areas), decreased inflammation, enhanced re-epithelialisation, and promoted the formation of well-vascularised granulation tissue. Conclusions: MSC-Ch-gel effectively promotes infected wound healing in rats with third-degree burns. Gel preparation can be easily implemented into clinical practice.
Collapse
|
39
|
Sampath SJP, Rath SN, Kotikalapudi N, Venkatesan V. Beneficial effects of secretome derived from mesenchymal stem cells with stigmasterol to negate IL-1β-induced inflammation in-vitro using rat chondrocytes-OA management. Inflammopharmacology 2021; 29:1701-1717. [PMID: 34546477 DOI: 10.1007/s10787-021-00874-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most prevalent joint disease predominantly characterized by inflammation which drives cartilage destruction. Mesenchymal stem cells-condition medium (MSC-CM) or the secretome is enriched with bioactive factors and possesses anti-inflammatory and regenerative effects. The present study aimed at evaluating the effects of combining MSC-conditioned medium with stigmasterol compared with the individual treatments in alleviating interleukin-1 beta (IL-1β)-induced inflammation in rat chondrocytes. Stigmasterol is a phytosterol exhibiting anti-inflammatory effects. IL-1β (10 ng/ml) was used to induce inflammation and mimic OA in-vitro in primary rat articular chondrocytes. The IL-1β-stimulated chondrocytes were treated with MSC-CM, stigmasterol, and a combination of MSC-CM and stigmasterol for 24 h. Cell viability was measured using MTT assay. Protein expression of inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), collagen II (COL2A1) and matrix metalloproteinase (MMP)-13 were evaluated by immunofluorescence. Gene expression levels of MMP-3, MMP-13 and A Disintegrin-like and Metalloproteinases with Thrombospondin Motifs (ADAMTS)-5 were measured using qRT-PCR. NF-κB signaling pathway was studied using western blotting. A significant reduction in the expression of iNOS, IL-6, MMP-3, MMP-13 and ADAMTS-5, and a significant increase in COL2A1 expression was observed in the rat chondrocytes across all the treatment groups. However, the combination treatment of MSC-CM and stigmasterol remarkably reversed the IL-1β-induced pro-inflammatory/pro-catabolic responses to near normal levels comparable to the control group. The combination treatment (MSC-CM + stigmasterol) elicited a superior anti-inflammatory/anti-catabolic effect by inhibiting the IL-1β-induced NF-κB activation evidenced by the negligible phosphorylation of p65 and IκBα subunits, thereby emphasizing the benefit of the combination therapy over the individual treatments.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Stem Cell Research Laboratory, Department of Cell and Molecular Biology, National Institute of Nutrition, Indian Council of Medical Research, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502285, Telangana, India
| | - Nagasuryaprasad Kotikalapudi
- Stem Cell Research Laboratory, Department of Cell and Molecular Biology, National Institute of Nutrition, Indian Council of Medical Research, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Vijayalakshmi Venkatesan
- Stem Cell Research Laboratory, Department of Cell and Molecular Biology, National Institute of Nutrition, Indian Council of Medical Research, Tarnaka, Hyderabad, 500007, Telangana, India.
| |
Collapse
|