1
|
Yan P, Tian Y, Li X, Li S, Wu H, Wang T. Identification of Copper Homeostasis-Related Gene Signature for Predicting Prognosis in Patients with Epithelial Ovarian Cancer. Cancer Inform 2024; 23:11769351241272400. [PMID: 39139301 PMCID: PMC11320685 DOI: 10.1177/11769351241272400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives This research aims to establish a copper homeostasis-related gene signature for predicting the prognosis of epithelial ovarian cancer and to investigate its underlying mechanisms. Methods We mainly constructed the copper homeostasis-related gene signature by LASSO regression analysis. Then multiple methods were used to evaluate the independent predictive ability of the model and explored the mechanisms. Results The 15-copper homeostasis-related gene (15-CHRG) signature was successfully established. Utilizing an optimal cut-off value of 0.35, we divided the training dataset into high-risk and low-risk subgroups. Kaplan-Meier analysis revealed that survival times for the high-risk subgroup were significantly shorter than those in the low-risk group (P < .05). Additionally, the Area Under the Curve (AUC) of the 15-CHRG signature achieved 0.822 at 1 year, 0.762 at 3 years, and 0.696 at 5 years in the training set. COX regression analysis confirmed the 15-CHRG signature as both accurate and independent. Gene set enrichment (GSEA), Kyoto Encyclopedia of Gene and Genome (KEGG) and Gene Ontology (GO) analysis showed that there were significant differences in apoptosis, p53 pathway, protein synthesis, hydrolase and transport-related pathways between high-risk group and low-risk group. In tumor immune cell (TIC) analysis, the increased expression of resting mast cells was positively correlated with the risk score. Conclusion Consequently, the 15-CHRG signature shows significant potential as a method for accurately predicting clinical outcomes and treatment responses in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Ping Yan
- Department of General Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueqin Tian
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojing Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuangmei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Feng L, Zhang N, Luo L, Liu J, Yao Y, Gao MS, Pan J, He C. Investigation of the Proteasome 26S Subunit, ATPase Family Genes as Potential Prognostic Biomarkers and Therapeutic Targets for Hepatocellular Carcinoma. Cancer Manag Res 2024; 16:95-111. [PMID: 38370535 PMCID: PMC10874222 DOI: 10.2147/cmar.s449488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
Background Several studies suggest that Proteasome 26S Subunit, ATPase (PSMC) family genes are of great importance in tumor progression and spreading, but the study for systematic evaluation of the function of PSMC genes in hepatocellular carcinoma (HCC) is currently lacking. Methods The functions of PSMC genes in HCC were analyzed using multiple online databases, including the TCGA database, GEO database, HPA database, cBioPortal database, DAVID, and KEGG pathway. Experiments were later conducted to verify PSMC expression. Results High levels of PSMC gene expression were detected in HCC tissues and PSMCs exhibited potentially powerful abilities in diagnosing HCC patients. All PSMC proteins are expressed to varying degrees in HCC tissues and high expression of the PSMC genes lead to poor prognosis in patients with HCC. Moreover, DNA methylation involves the regulation of the expression of PSMC2 and PSMC5 in HCC, and the levels of methylation of PSMC2 or PSMC5 correlate positively with patient overall survival in HCC patients. The copy number alteration and mutation of PSMC genes were observed and related to the expression of PSMCs in HCC. Functional enrichment analysis showed that many highly co-expressed genes of PSMCs had a potential role in tumor progression and metastasis, which merited further in-depth study. Functional network analysis also suggests that the primary biological function of PSMC genes is the regulation of protein homeostasis and energy metabolism in HCC. Moreover, the expression levels of PSMCs are related to immune cell infiltrates and immunomodulatory factors in HCC. Conclusion Our study indicates that PSMC genes are the potential target for precision immunotherapy and novel prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Lei Feng
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Ning Zhang
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Lan Luo
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Jie Liu
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Yong Yao
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Ming-Sheng Gao
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Jin Pan
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining City, Sichuan Province, People’s Republic of China
| | - Cai He
- The Division of Gastroenterology and Hepatology, Yibin Second People’s Hospital, Yibin City, Sichuan Province, People’s Republic of China
| |
Collapse
|
3
|
Qu X, Tan H, Mao J, Yang M, Xu J, Yan X, Wu W. Identification of a novel prognostic signature correlated with epithelial-mesenchymal transition, N6-methyladenosine modification, and immune infiltration in colorectal cancer. Cancer Med 2023; 12:5926-5938. [PMID: 36281556 PMCID: PMC10028107 DOI: 10.1002/cam4.5384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is a commonly diagnosed human malignancy worldwide. Both epithelial-mesenchymal transition (EMT) and N6-methyladenosine (m6A) modification play a crucial role in CRC development. This study aimed to construct a prognostic signature based on the genes related to EMT and m6A modification. METHOD Firstly, the mRNA expression profiling of CRC tissues was analyzed using TCGA and GEO databases. The prognostic hub genes related to EMT and m6A modification were selected using weighted correlation network and cox regression analysis. The prognostic signature was constructed based on hub genes, followed by validation in three external cohorts. Finally, the expression of the representative hub gene was detected in clinical samples, and its biological role was investigated using assays in vivo and in vitro. RESULTS A prognostic signature was constructed using the following genes: YAP1, FAM3C, NUBPL, GLO1, JARID2, NFKB1, CDKN1B, HOOK1, and GIPC2. The signature effectively stratified the clinical outcome of CRC patients in the training cohort and two validation cohorts. The subgroup analysis demonstrated the signature could identify high-risk population from CRC patients within stage I-II or III-IV, female, male and elder patients. The signature was correlated with the infiltration of some immune cells (such as macrophage and regulatory T cells) and gene mutation counts. Finally, the hub gene GIPC2 was found to be downregulated in CRC tissues and most CRC cells lines. GIPC2 overexpression inhibited the malignant characteristics of CRC cells in vitro and in vivo through upregulating E-cadherin and downregulating N-cadherin, Vimentin, and Snail, while the opposite results were observed for GIPC2 knockdown in CRC cells. CONCLUSION Our present study for the first time constructed a novel prognostic signature related to EMT, m6A modification, and immune infiltration for CRC risk stratification. In addition, GIPC2 is identified as a promising clinical biomarker or therapeutical target for CRC.
Collapse
Affiliation(s)
- Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghong Tan
- Department of VIP Clinic, General Division, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai East Hospital Ji'an Hospital, Ji'an, China
| | - Jingxian Mao
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mengxue Yang
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jian Xu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenjuan Wu
- Department of Oncology, Northern Jiangsu People's Hospital affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Jia H, Tang WJ, Sun L, Wan C, Zhou Y, Shen WZ. Pan-cancer analysis identifies proteasome 26S subunit, ATPase (PSMC) family genes, and related signatures associated with prognosis, immune profile, and therapeutic response in lung adenocarcinoma. Front Genet 2023; 13:1017866. [PMID: 36699466 PMCID: PMC9868736 DOI: 10.3389/fgene.2022.1017866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Proteasome 26S subunit, ATPase gene (PSMC) family members play a critical role in regulating protein degradation and are essential for tumor development. However, little is known about the integrative function and prognostic significance of the PSMC gene family members in lung cancer. Methods: First, we assessed the expression and prognostic features of six PSMC family members in pan-cancer from The Cancer Genome Atlas (TCGA) dataset. Hence, by focusing on the relationship between PSMC genes and the prognostic, genomic, and tumor microenvironment features in lung adenocarcinoma (LUAD), a PSMC-based prognostic signature was established using consensus clustering and multiple machine learning algorithms, including the least absolute shrinkage and selection operator (LASSO) Cox regression, CoxBoost, and survival random forest analysis in TCGA and GSE72094. We then validated it in three independent cohorts from GEO and estimated the correlation between risk score and clinical features: genomic features (alterations, tumor mutation burden, and copy number variants), immune profiles (immune score, TIDE score, tumor-infiltrated immune cells, and immune checkpoints), sensitivity to chemotherapy (GDSC, GSE42127, and GSE14814), and immunotherapy (IMvigor210, GSE63557, and immunophenoscore). Twenty-one patients with LUAD were included in our local cohort, and tumor samples were submitted for evaluation of risk gene and PD-L1 expression. Results: Nearly all six PSMC genes were overexpressed in pan-cancer tumor tissues; however, in LUAD alone, they were all significantly correlated with overall survival. Notably, they all shared a positive association with increased TMB, TIDE score, expression of immune checkpoints (CD276 and PVR), and more M1 macrophages but decreased B-cell abundance. A PSMC-based prognostic signature was established based on five hub genes derived from the differential expression clusters of PSMC genes, and it was used to dichotomize LUAD patients into high- and low-risk groups according to the median risk score. The area under the curve (AUC) values for predicting survival at 1, 3, and 5 years in the training cohorts were all >.71, and the predictive accuracy was also robust and stable in the GSE72094, GSE31210, and GSE13213 datasets. The risk score was significantly correlated with advanced tumor, lymph node, and neoplasm disease stages as an independent risk factor for LUAD. Furthermore, the risk score shared a similar genomic and immune feature as PSMC genes, and high-risk tumors exhibited significant genomic and chromosomal instability, a higher TIDE score but lower immune score, and a decreased abundance of B and CD8+ T cells. Finally, high-risk patients were suggested to be less sensitive to immunotherapy but had a higher possibility of responding to platinum-based chemotherapy. The LUAD samples from the local cohort supported the difference in the expression levels of these five hub genes between tumor and normal tissues and the correlation between the risk score and PD-L1 expression. Conclusion: Overall, our results provide deep insight into PSMC genes in LUAD, especially the prognostic effect and related immune profile that may predict therapeutic responses.
Collapse
Affiliation(s)
- Hui Jia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Jin Tang
- Department of Nursing, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Sun
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Wan
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Yun Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yun Zhou, ; Wei-Zhong Shen,
| | - Wei-Zhong Shen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yun Zhou, ; Wei-Zhong Shen,
| |
Collapse
|
5
|
Lara JJ, Bencomo-Alvarez AE, Gonzalez MA, Olivas IM, Young JE, Lopez JL, Velazquez VV, Glovier S, Keivan M, Rubio AJ, Dang SK, Solecki JP, Allen JC, Tapia DN, Tychhon B, Astudillo GE, Jordan C, Chandrashekar DS, Eiring AM. 19S Proteasome Subunits as Oncogenes and Prognostic Biomarkers in FLT3-Mutated Acute Myeloid Leukemia (AML). Int J Mol Sci 2022; 23:ijms232314586. [PMID: 36498916 PMCID: PMC9740165 DOI: 10.3390/ijms232314586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3) were recently identified as prognostic biomarkers and potential therapeutic targets in chronic myeloid leukemia (CML) and multiple solid tumors. In the present study, we analyzed the expression of 19S proteasome subunits in acute myeloid leukemia (AML) patients with mutations in the FMS-like tyrosine kinase 3 (FLT3) gene and assessed their impact on overall survival (OS). High levels of PSMD3 but not PSMD1 expression correlated with a worse OS in FLT3-mutated AML. Consistent with an oncogenic role for PSMD3 in AML, shRNA-mediated PSMD3 knockdown impaired colony formation of FLT3+ AML cell lines, which correlated with increased OS in xenograft models. While PSMD3 regulated nuclear factor-kappa B (NF-κB) transcriptional activity in CML, we did not observe similar effects in FLT3+ AML cells. Rather, proteomics analyses suggested a role for PSMD3 in neutrophil degranulation and energy metabolism. Finally, we identified additional PSMD subunits that are upregulated in AML patients with mutated versus wild-type FLT3, which correlated with worse outcomes. These findings suggest that different components of the 19S regulatory complex of the 26S proteasome can have indications for OS and may serve as prognostic biomarkers in AML and other types of cancers.
Collapse
Affiliation(s)
- Joshua J. Lara
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Alfonso E. Bencomo-Alvarez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mayra A. Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Idaly M. Olivas
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Steven Glovier
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mehrshad Keivan
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Andres J. Rubio
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Sara K. Dang
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Jesse C. Allen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Desiree N. Tapia
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Boranai Tychhon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Gonzalo E. Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Connor Jordan
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Darshan S. Chandrashekar
- Department of Pathology-Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-(915)-215-4812
| |
Collapse
|
6
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
7
|
Ullah MA, Islam NN, Moin AT, Park SH, Kim B. Evaluating the Prognostic and Therapeutic Potentials of the Proteasome 26S Subunit, ATPase ( PSMC) Family of Genes in Lung Adenocarcinoma: A Database Mining Approach. Front Genet 2022; 13:935286. [PMID: 35938038 PMCID: PMC9353525 DOI: 10.3389/fgene.2022.935286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
This study explored the prognostic and therapeutic potentials of multiple Proteasome 26S Subunit, ATPase (PSMC) family of genes (PSMC1-5) in lung adenocarcinoma (LUAD) diagnosis and treatment. All the PSMCs were found to be differentially expressed (upregulated) at the mRNA and protein levels in LUAD tissues. The promoter and multiple coding regions of PSMCs were reported to be differentially and distinctly methylated, which may serve in the methylation-sensitive diagnosis of LUAD patients. Multiple somatic mutations (alteration frequency: 0.6-2%) were observed along the PSMC coding regions in LUAD tissues that could assist in the high-throughput screening of LUAD patients. A significant association between the PSMC overexpression and LUAD patients' poor overall and relapse-free survival (p < 0.05; HR: >1.3) and individual cancer stages (p < 0.001) was discovered, which justifies PSMCs as the ideal targets for LUAD diagnosis. Multiple immune cells and modulators (i.e., CD274 and IDO1) were found to be associated with the expression levels of PSMCs in LUAD tissues that could aid in formulating PSMC-based diagnostic measures and therapeutic interventions for LUAD. Functional enrichment analysis of neighbor genes of PSMCs in LUAD tissues revealed different genes (i.e., SLIRP, PSMA2, and NUDSF3) previously known to be involved in oncogenic processes and metastasis are co-expressed with PSMCs, which could also be investigated further. Overall, this study recommends that PSMCs and their transcriptional and translational products are potential candidates for LUAD diagnostic and therapeutic measure discovery.
Collapse
Affiliation(s)
- Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Su Hyun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
8
|
Liu Y, Xu L, Hao C, Wu J, Jia X, Ding X, Lin C, Zhu H, Zhang Y. Identification and Validation of Novel Immune-Related Alternative Splicing Signatures as a Prognostic Model for Colon Cancer. Front Oncol 2022; 12:866289. [PMID: 35692800 PMCID: PMC9178000 DOI: 10.3389/fonc.2022.866289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundIndividual immune-related alternative splicing (AS) events have been found to be significant in immune regulation and cancer prognosis. However, a comprehensive analysis of AS events in cancer cells based on immune-related genes (IRGs) has not been performed, and its clinical value is unknown.MethodsColon cancer cases with AS data were obtained from TCGA, and then, we identified overall survival-related AS events (OS-ASEs) based on IRGs by univariate analyses. Using Lasso regression, multivariate Cox regression, Kaplan–Meier analysis and nomograms, we constructed an AS risk model based on the calculated risk score. Furthermore, associations of the risk score with clinical and immune features were confirmed through the Wilcoxon rank sum test, association analysis, etc. Finally, by qRT–PCR, cell coculture and CCK-8 analyses, we validated the significance of OS-ASEs in colon cancer cell lines and clinical samples.ResultsA total of 3,119 immune-related AS events and 183 OS-ASEs were identified, and 9 OS-ASEs were ultimately used to construct a comprehensive risk model for colon cancer patients. Low-risk patients had better OS and DFS rates than high risk patients. Furthermore, a high risk score corresponded to high numbers of multiple tumour-infiltrating immune cells and high expression of HLA-D region genes and immune checkpoint genes. Notably, we identified for the first time that anti-PD-L1 or anti-CTLA-4 antibodies may decrease the OS of specific colon cancer patients in the low-risk group. Additionally, the in vitro experiment validated that CD46-9652-ES and PSMC5-43011-ES are positively correlated with the infiltration of immune cells and promote the growth of colon cancer cells. CD46-9652-ES can contribute to T cell-mediated tumour cell killing. PSMC5-43011-ES was observed to induce M2 polarization of macrophages.ConclusionsThis study identified and validated immune-related prognostic AS signatures that can be used as a novel AS prognostic model and provide a novel understanding of the relationship between the immune microenvironment and clinical outcomes.
Collapse
Affiliation(s)
- Yunze Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chuanchuan Hao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianhong Jia
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xia Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiang Ya Hospital of Central South University, Changsha, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yi Zhang, ; Hongmei Zhu,
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yi Zhang, ; Hongmei Zhu,
| |
Collapse
|
9
|
Xu L, Li W, Yang T, Hu S, Zou Q, Jiao J, Jiang N, Zhang Y. Immune-Related RNA-Binding Protein-Based Signature With Predictive and Prognostic Implications in Patients With Lung Adenocarcinoma. Front Mol Biosci 2022; 9:807622. [PMID: 35647031 PMCID: PMC9136055 DOI: 10.3389/fmolb.2022.807622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Dysregulation of RNA-binding proteins (RBPs) in cancers is associated with immune and cancer development. Here, we aimed to profile immune-related RBPs in lung adenocarcinoma (LUAD) and construct an immune-related RBP signature (IRBPS) to predict the survival and response to immunotherapy.Methods: A correlation analysis was performed to establish a co-expression network of RBPs and immune-related genes (IRGs) to characterize immune-related RBPs in the TCGA–LUAD cohort (n = 497 cases). Then, a combination of the Random survival forest (RSF) and Cox regression analysis was performed to screen the RBPs and establish IRBPS. This was followed by independent validation of IRBPS in GSE72094 (n = 398 cases), GSE31210, (n = 226 cases), and GSE26939 (n = 114 cases). Differences between the low- and high-risk groups were compared in terms of gene mutations, tumor mutation burden, tumor-infiltrating lymphocytes, and biomarkers responsive to immunotherapy.Results: DDX56, CTSL, ZC3H12D, and PSMC5 were selected and used to construct IRBPS. The high-risk scores of patients had a significantly worse prognosis in both training and testing cohorts (p < 0.0001 and p < 0.05, respectively), and they tended to be older and have an advanced TNM stage. Furthermore, IRBPS was a prognostic factor independent of age, gender, smoking history, TNM stage, and EGFR mutation status (p = 0.002). In addition, high-risk scores of IRBPS were significantly correlated with tumor-infiltrating lymphocytes (p < 0.05). They also had a high level of PD-L1 protein expression (p < 0.01), number of neoantigens (p < 0.001), and TMB (p < 0.001), implying the possible prediction of IRBPS in the immunotherapy of LUAD.Conclusion: The currently established IRBPS encompassing immune-related RBPs might serve as a promising tool to predict survival, reflect the immune microenvironment, and predict the efficacy of immunotherapy among LUAD patients.
Collapse
Affiliation(s)
- Lei Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanru Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Zou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ju Jiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningyi Jiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Ningyi Jiang, ; Yong Zhang,
| | - Yong Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ningyi Jiang, ; Yong Zhang,
| |
Collapse
|