1
|
Maleszewska M, Roura AJ, Dabrowski MJ, Draminski M, Wojtas B. Decoding glioblastoma's diversity: Are neurons part of the game? Cancer Lett 2025; 620:217666. [PMID: 40147584 DOI: 10.1016/j.canlet.2025.217666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma multiforme (GBM, WHO Grade 4) is a highly aggressive primary brain tumor with limited treatment options and a poor prognosis. A key challenge in GBM therapy lies in its pronounced heterogeneity, both within individual tumors (intratumoral) and between patients (intertumoral). Historically, neurons have been underexplored in GBM research; however, recent studies reveal that GBM development is closely linked to neural and glial progenitors, often mimicking neurodevelopmental processes in a dysregulated manner. Beyond damaging neuronal tissue, GBM actively engages with neurons to promote pro-tumorigenic signaling, including neuronal hyperexcitability and seizures. Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of the tumor microenvironment (TME), uncovering the critical roles of immune cells, endothelial cells, and astrocytes in tumor progression. However, technical limitations of scRNA-seq hinder its ability to capture the transcriptomes of neurons, necessitating the use of single-nucleus RNA sequencing (snRNA-seq) to study these interactions at single-cell resolution. This work collects the emerging insights of glioblastoma-neuron interactions, focusing on how GBM exploits neurodevelopmental pathways and reshapes neuronal networks. Moreover, we perform bioinformatic analysis of publicly available snRNA-seq datasets to propose putative cell-cell interactions driving glioma-neuronal dynamics. This study delineates key signaling pathways and underscores the need for further investigation to evaluate their potential as therapeutic targets.
Collapse
Affiliation(s)
- Marta Maleszewska
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warsaw, Poland.
| | - Adrià-Jaume Roura
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal Draminski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Zhao Y, Yu Y, Chen W, Zhang X, Lv J, Zhao H. Oligodendroglioma: Advances in Molecular Mechanisms and Immunotherapeutic Strategies. Biomedicines 2025; 13:1133. [PMID: 40426960 DOI: 10.3390/biomedicines13051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Oligodendroglioma is a central nervous system tumor defined by IDH1/2 mutations and 1p/19q co-deletion. Current management involves maximal resection followed by radiotherapy/chemotherapy, yielding a 20-year survival rate of 37% for grade 3 tumors according to the WHO 2021 classification. As these tumors primarily affect young to middle-aged patients, novel therapies are urgently needed to improve outcomes. Immunotherapy has revolutionized tumor treatment by modulating immune responses. However, its application in oligodendrogliomas faces two major hurdles, including the immunosuppressive tumor microenvironment (TME) and the blood-brain barrier's restrictive properties. This review first examines oligodendroglioma's molecular alterations to refine diagnosis and guide targeted therapies. Next, we focus on the oligodendroglioma TME to evaluate emerging immunotherapies, including oncolytic viruses, immune checkpoint blockade, chimeric antigen receptor (CAR) T-cell therapy, and cancer vaccines. Finally, we discuss current challenges and future directions to overcome therapeutic limitations and advance treatment strategies.
Collapse
Affiliation(s)
- Yongxin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Weizhi Chen
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiaojun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
3
|
Stockwell CA, Thang M, Kram DE, Satterlee AB, Hingtgen S. Therapeutic approaches for targeting the pediatric brain tumor microenvironment. Drug Deliv Transl Res 2025:10.1007/s13346-025-01839-3. [PMID: 40257744 DOI: 10.1007/s13346-025-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Central nervous system (CNS) tumors are the most frequent solid malignant tumors in pediatric patients and are the leading cause of tumor-related death in children. Treatment for this heterogeneous group of tumors consists of various combinations of safe maximal surgical resection, chemotherapy, and radiation therapy which offer a cure for some children but often cause debilitating adverse late effects in others. While therapies targeting the tumor microenvironment (TME) like immune checkpoint inhibition (ICI) have been successful in treating some cancers, these therapies failed to exhibit treatment efficacy in the majority of pediatric brain tumors in the clinic. Importantly, the pediatric TME is unique and distinct from adult brain tumors and designing therapies to effectively target these tumors requires understanding the unique biology of pediatric brain tumors and the use of translational models that recapitulate the TME. Here we describe the TME of medulloblastoma (MB) and diffuse midline glioma (DMG), specifically diffuse intrinsic pontine glioma (DIPG), and further present the current drug delivery approaches and clinical administration routes targeting the TME in these tumors, including preclinical and clinical studies.
Collapse
Affiliation(s)
- Caroline A Stockwell
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Ramachandran R, Jeans AF. Breaking Down Glioma-Microenvironment Crosstalk. Neuroscientist 2025; 31:177-194. [PMID: 39066464 PMCID: PMC11909767 DOI: 10.1177/10738584241259773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
High-grade gliomas (HGGs) are the commonest primary brain cancers. They are characterized by a pattern of aggressive growth and diffuse infiltration of the host brain that severely limits the efficacy of conventional treatments and patient outcomes, which remain generally poor. Recent work has described a suite of mechanisms via which HGGs interact, predominantly bidirectionally, with various cell types in the host brain including neurons, glial cells, immune cells, and vascular elements to drive tumor growth and invasion. These insights have the potential to inspire novel approaches to HGG therapy that are critically needed. This review explores HGG-host brain interactions and considers whether and how they might be exploited for therapeutic gain.
Collapse
|
5
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
6
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
7
|
Menezes A, Julião G, Mariath F, Ferreira AL, Oliveira-Nunes MC, Gallucci L, Evaristo JAM, Nogueira FCS, Pereira DDA, Carneiro K. Epigenetic Mechanisms Histone Deacetylase-Dependent Regulate the Glioblastoma Angiogenic Matrisome and Disrupt Endothelial Cell Behavior In Vitro. Mol Cell Proteomics 2024; 23:100722. [PMID: 38272115 PMCID: PMC10883839 DOI: 10.1016/j.mcpro.2024.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.
Collapse
Affiliation(s)
- Aline Menezes
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glaucia Julião
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Mariath
- Laboratório de Estudos Avançados em Jornalismo, UNICAMP/SP, São Paulo, São Paulo, Brazil
| | - Ana Luiza Ferreira
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lara Gallucci
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise de Abreu Pereira
- Programa de Oncobiologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer- INCA/RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Instituto de Ciências Biomédicas e Programa de Pós-graduação em Medicina (Anatomia Patológica), UFRJ/RJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
D'Alessandris QG, Menna G, Izzo A, D'Ercole M, Della Pepa GM, Lauretti L, Pallini R, Olivi A, Montano N. Neuromodulation for Brain Tumors: Myth or Reality? A Narrative Review. Int J Mol Sci 2023; 24:11738. [PMID: 37511496 PMCID: PMC10380317 DOI: 10.3390/ijms241411738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, research on brain cancers has turned towards the study of the interplay between the tumor and its host, the normal brain. Starting from the establishment of a parallelism between neurogenesis and gliomagenesis, the influence of neuronal activity on the development of brain tumors, particularly gliomas, has been partially unveiled. Notably, direct electrochemical synapses between neurons and glioma cells have been identified, paving the way for new approaches for the cure of brain cancers. Since this novel field of study has been defined "cancer neuroscience", anticancer therapeutic approaches exploiting these discoveries can be referred to as "cancer neuromodulation". In the present review, we provide an up-to-date description of the novel findings and of the therapeutic neuromodulation perspectives in cancer neuroscience. We focus both on more traditional oncologic approaches, aimed at modulating the major pathways involved in cancer neuroscience through drugs or genetic engineering techniques, and on electric stimulation proposals; the latter is at the cutting-edge of neuro-oncology.
Collapse
Affiliation(s)
- Quintino Giorgio D'Alessandris
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Grazia Menna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Izzo
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Manuela D'Ercole
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Liverana Lauretti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Roberto Pallini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Olivi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Nicola Montano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
9
|
Al-Zeheimi N, Gao Y, Greer PA, Adham SA. Neuropilin-1 Knockout and Rescue Confirms Its Role to Promote Metastasis in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24097792. [PMID: 37175499 PMCID: PMC10178772 DOI: 10.3390/ijms24097792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer (BC) metastasis remains a leading cause of female mortality. Neuropilin-1 (NRP-1) is a glycoprotein receptor that plays ligand-dependent roles in BC. Clinical studies indicate its correlation with metastatic disease; however, its functional role in BC metastasis remains uncertain. CRISPR-Cas9 was used to knockout the NRP-1 gene in MDA-MB-231 BC cells, and the effects on metastasis were determined using an orthotopic mouse engraftment model. NRP-1 expression in knockout cells was rescued using a recombinant cDNA with a silent mutation in the sgRNA target-adjacent PAM sequence. Differentially expressed genes between NRP-1 knockout and control cells were determined using whole-transcriptome sequencing and validated using real-time PCR. NRP-1KO cells showed a pronounced reduction in the metastasis to the lungs. KEGG pathway analysis of the transcriptome data revealed that PI3K and ECM receptor interactions were among the top altered pathways in the NRP-1KO cells. In addition, reduction in metastasis enhancers proteins, Integrin-β3 and Tenascin-C, and genes CCL20 and FN1 and upregulation of metastasis suppressor genes, ACVRL and GPX3 in NRP-1KO were detected. These findings provide evidence for a functional role for NRP-1 in BC metastasis, supporting further exploration of NRP-1 and the identified genes as targets in treating metastatic BC.
Collapse
Affiliation(s)
- Noura Al-Zeheimi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman
| | - Yan Gao
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
10
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
11
|
Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int J Oncol 2022; 61:104. [PMID: 35856439 PMCID: PMC9339490 DOI: 10.3892/ijo.2022.5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence has become available to reveal the synaptic and functional integration of glioma into the brain network, facilitating tumor progression. The novel discovery of glioma-neuronal interactions has fundamentally challenged our understanding of this refractory disease. The present review aimed to provide an overview of how the neuronal activities function through synapses, neurotransmitters, ion channels, gap junctions, tumor microtubes and neuronal molecules to establish communications with glioma, as well as a simplified explanation of the reciprocal effects of crosstalk on neuronal pathophysiology. In addition, the current state of therapeutic avenues targeting critical factors involved in glioma-euronal interactions is discussed and an overview of clinical trial data for further investigation is provided. Finally, newly emerging technologies, including immunomodulation, a neural stem cell-based delivery system, optogenetics techniques and co-culture of neuron organoids and glioma, are proposed, which may pave a way towards gaining deeper insight into both the mechanisms associated with neuron- and glioma-communicating networks and the development of therapeutic strategies to target this currently lethal brain tumor.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Huanxiao Shi
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Mengmei Zhu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Shengjia Wen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|