1
|
Khan A, Oliveira J, Lee YS, Guest JD, Silvera R, Pressman Y, Pearse DD, Nettina AE, Goldschmidt-Clermont PJ, Al-Ali H, Williams I, Levi AD, Dietrich WD. Human Schwann Cell-Derived Extracellular Vesicle Isolation, Bioactivity Assessment, and Omics Characterization. Int J Nanomedicine 2025; 20:4123-4144. [PMID: 40201152 PMCID: PMC11977562 DOI: 10.2147/ijn.s500159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Schwann cell-derived extracellular vesicles (SCEVs) have demonstrated favorable effects in spinal cord, peripheral nerve, and brain injuries. Herein, a scalable, standardized, and efficient isolation methodology of SCEVs obtaining a high yield with a consistent composition as measured by proteomic, lipidomic, and miRNA analysis of their content is described for future clinical use. Methods Human Schwann cells were obtained ethically from nine donors and cultured in a defined growth medium optimized for proliferation. At confluency, the culture was replenished with an isolation medium for 48 hours, then collected and centrifuged sequentially at low and ultra-high speeds to collect purified EVs. The EVs were characterized with mass spectrometry to identify and quantify proteins, lipidomic analysis to assess lipid composition, and next-generation sequencing to confirm miRNA profiles. Each batch of EVs was assessed to ensure their therapeutic potential in promoting neurite outgrowth and cell survival. Results High yields of SCEVs were consistently obtained with similar comprehensive molecular profiles across samples, indicating the reproducibility and reliability of the isolation method. Bioactivity to increase neurite process growth was confirmed in vitro. The predominance of triacylglycerol and phosphatidylcholine suggested its role in cellular membrane dynamics essential for axon regeneration and inflammation mitigation. Of the 2517 identified proteins, 136 were closely related to nervous system repair and regeneration. A total of 732 miRNAs were cataloged, with the top 30 miRNAs potentially contributing to axon growth, neuroprotection, myelination, angiogenesis, the attenuation of neuroinflammation, and key signaling pathways such as VEGFA-VEGFR2 and PI3K-Akt signaling, which are crucial for nervous system repair. Conclusion The study establishes a robust framework for SCEV isolation and their comprehensive characterization, which is consistent with their therapeutic potential in neurological applications. This work provides a valuable proteomic, lipidomic, and miRNA dataset to inform future advancements in applying SCEV to the experimental treatment of neurological injuries and diseases.
Collapse
Affiliation(s)
- Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julia Oliveira
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Risset Silvera
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana E Nettina
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Hassan Al-Ali
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indigo Williams
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Goldschmidt-Clermont PJ, Khan A, Jimsheleishvili G, Graham P, Brooks A, Silvera R, Goldschmidt AJ, Pearse DD, Dietrich WD, Levi AD, Guest JD. Treating amyotrophic lateral sclerosis with allogeneic Schwann cell-derived exosomal vesicles: a case report. Neural Regen Res 2025; 20:1207-1216. [PMID: 38922880 PMCID: PMC11438342 DOI: 10.4103/nrr.nrr-d-23-01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 02/24/2024] [Indexed: 06/28/2024] Open
Abstract
Schwann cells are essential for the maintenance and function of motor neurons, axonal networks, and the neuromuscular junction. In amyotrophic lateral sclerosis, where motor neuron function is progressively lost, Schwann cell function may also be impaired. Recently, important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported. This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles, marking, to our knowledge, the first instance of such treatment. An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis. After initial diagnosis, the patient underwent a combination of generic riluzole, sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis, and taurursodiol. The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function. We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired (senescent) and that exposure of the patient's Schwann cells to allogeneic Schwann cell-derived exosomal vesicles, cultured expanded from a cadaver donor improved their growth capacity in vitro. After a period of observation lasting 10 weeks, during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored, the patient received weekly consecutive infusions of 1.54 × 10 12 (×2), and then consecutive infusions of 7.5 × 10 12 (×6) allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco's phosphate-buffered saline. None of the infusions were associated with adverse events such as infusion reactions (allergic or otherwise) or changes in vital signs. Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend. A more sensitive in-house assay suggested possible inflammasome activation during the disease course. A trend for clinical stabilization was observed during the infusion period. Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles. Initial findings suggest that this approach is safe.
Collapse
Affiliation(s)
| | - Aisha Khan
- Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - George Jimsheleishvili
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Patricia Graham
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana Brooks
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Risset Silvera
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Damien D. Pearse
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D. Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - James D. Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Burrell JC, Ali ZS, Zager EL, Rosen JM, Tatarchuk MM, Cullen DK. Engineering the Future of Restorative Clinical Peripheral Nerve Surgery. Adv Healthc Mater 2025:e2404293. [PMID: 40166822 DOI: 10.1002/adhm.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Peripheral nerve injury is a significant clinical challenge, often leading to permanent functional deficits. Standard interventions, such as autologous nerve grafts or distal nerve transfers, require sacrificing healthy nerve tissue and typically result in limited motor or sensory recovery. Nerve regeneration is complex and influenced by several factors: 1) the regenerative capacity of proximal neurons, 2) the ability of axons and support cells to bridge the injury, 3) the capacity of Schwann cells to maintain a supportive environment, and 4) the readiness of target muscles or sensory organs for reinnervation. Emerging bioengineering solutions, including biomaterials, drug delivery systems, fusogens, electrical stimulation devices, and tissue-engineered products, aim to address these challenges. Effective translation of these therapies requires a deep understanding of the physiology and pathology of nerve injury. This article proposes a comprehensive framework for developing restorative strategies that address all four major physiological responses in nerve repair. By implementing this framework, we envision a paradigm shift that could potentially enable full functional recovery for patients, where current approaches offer minimal hope.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric L Zager
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, NH, 03766, USA
| | - Mykhailo M Tatarchuk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Zhang H, Jiao L, Yang S, Li H, Jiang X, Feng J, Zou S, Xu Q, Gu J, Wang X, Wei B. Brain-computer interfaces: the innovative key to unlocking neurological conditions. Int J Surg 2024; 110:5745-5762. [PMID: 39166947 PMCID: PMC11392146 DOI: 10.1097/js9.0000000000002022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Neurological disorders such as Parkinson's disease, stroke, and spinal cord injury can pose significant threats to human mortality, morbidity, and functional independence. Brain-Computer Interface (BCI) technology, which facilitates direct communication between the brain and external devices, emerges as an innovative key to unlocking neurological conditions, demonstrating significant promise in this context. This comprehensive review uniquely synthesizes the latest advancements in BCI research across multiple neurological disorders, offering an interdisciplinary perspective on both clinical applications and emerging technologies. We explore the progress in BCI research and its applications in addressing various neurological conditions, with a particular focus on recent clinical studies and prospective developments. Initially, the review provides an up-to-date overview of BCI technology, encompassing its classification, operational principles, and prevalent paradigms. It then critically examines specific BCI applications in movement disorders, disorders of consciousness, cognitive and mental disorders, as well as sensory disorders, highlighting novel approaches and their potential impact on patient care. This review reveals emerging trends in BCI applications, such as the integration of artificial intelligence and the development of closed-loop systems, which represent significant advancements over previous technologies. The review concludes by discussing the prospects and directions of BCI technology, underscoring the need for interdisciplinary collaboration and ethical considerations. It emphasizes the importance of prioritizing bidirectional and high-performance BCIs, areas that have been underexplored in previous reviews. Additionally, we identify crucial gaps in current research, particularly in long-term clinical efficacy and the need for standardized protocols. The role of neurosurgery in spearheading the clinical translation of BCI research is highlighted. Our comprehensive analysis presents BCI technology as an innovative key to unlocking neurological disorders, offering a transformative approach to diagnosing, treating, and rehabilitating neurological conditions, with substantial potential to enhance patients' quality of life and advance the field of neurotechnology.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University
- Harbin Medical University, Harbin
| | - Le Jiao
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang Province
| | | | | | | | - Jing Feng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University
- Harbin Medical University, Harbin
| | - Shuhuai Zou
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University
- Harbin Medical University, Harbin
| | - Qiang Xu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University
- Harbin Medical University, Harbin
| | - Jianheng Gu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University
- Harbin Medical University, Harbin
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University
| | - Baojian Wei
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, People's Republic of China
| |
Collapse
|
5
|
Cai W, Liu Y, Zhang T, Ji P, Tian C, Liu J, Zheng Z. GDNF facilitates the differentiation of ADSCs to Schwann cells and enhances nerve regeneration through GDNF/MTA1/Hes1 axis. Arch Biochem Biophys 2024; 753:109893. [PMID: 38309681 DOI: 10.1016/j.abb.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.
Collapse
Affiliation(s)
- Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Ting Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|