1
|
Zhang X, Su GH, Bao TS, He WP, Wang YY, Zhou YQ, Xie JX, Wang F, Lu R, Zhang S, Yi SQ, Li Q, Jiang SH, Li H, Hu LPP, Li J, Xu J. TNS4 promotes lymph node metastasis of gastric cancer by interacting with integrin Β1 and inducing the activation of fibroblastic reticular cell. Cancer Cell Int 2025; 25:204. [PMID: 40481538 PMCID: PMC12144749 DOI: 10.1186/s12935-025-03830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/15/2025] [Indexed: 06/11/2025] Open
Abstract
Lymph node (LN) metastasis of gastric cancer (GC) is one of the important pathways of GC metastasis, indicating the clinical staging and prognosis of patients. To investigate the underlying mechanism during the process of GC-induced LN metastasis, 7 pairs of GC tissues, paracancerous (PC) tissues, GC-positive LN (LN.P) and GC-negative LN (LN.N) tissues from GC patients with homogeneity were selected for RNA sequencing (RNA-seq) analysis. Tensin 4 (TNS4) was screened out and found to be significantly upregulated in LN.P tissues and closely related with the characteristics of GC. In vitro and in vivo experiments demonstrated that knockdown of TNS4 could significantly inhibit LN metastasis of GC cells and activation of fibroblastic reticular cells (FRCs) in LNs, thus inhibiting LN expansion induced by tumor cell invasion. Moreover, TNS4 was found to be interacted with integrin beta 1 (ITGB1) on FRCs, thereby affecting the binding of transforming growth factor β1 (TGF-β1) to ITGB1 and subsequently regulating downstream signaling molecules, and supporting the GC cell-induced LN metastasis.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Hong Su
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Tian-Shang Bao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Pai He
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Yang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Qi Zhou
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xuan Xie
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Lu
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Qing Li
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Li-Peng P Hu
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Appunni S, Saxena A, Ramamoorthy V, Zhang Y, Doke M, Nair SS, Khosla AA, Rubens M. Decorin: matrix-based pan-cancer tumor suppressor. Mol Cell Biochem 2025; 480:3569-3591. [PMID: 39954173 DOI: 10.1007/s11010-025-05224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Studies have shown that decorin is a potent pan-cancer tumor suppressor that is under-expressed in most cancers. Decorin interacts with receptor tyrosine kinases and functions as a pan-receptor tyrosine kinase inhibitor, thereby suppressing oncogenic signals. Decorin deficiency promotes epithelial-to-mesenchymal transition and enhances cancer dissemination and metastasis. According to recent GLOBOCAN estimates, the most common cancers worldwide are breast, lung, prostate, colorectal, skin (non-melanoma), and stomach. Considering the burden of rising cancer incidence and the importance of discovering novel molecular markers and potential therapeutic agents for cancer management, we have outlined the possible expressional and clinicopathological significance of decorin in major cancers based on available pre-clinical and clinical studies. Measuring plasma decorin is a minimally invasive technique, and human studies have shown that it is useful in predicting clinical outcomes in cancer though it needs further validation. Oncolytic virus-mediated decorin gene transfer has shown significant anti-tumorigenic effects in pre-clinical studies, though its implication in human subjects is yet to be understood. Exogenous decorin delivery in experimental studies has been shown to mitigate cancer growth, but its therapeutic efficacy and safety are poorly understood. Future research is required to translate the tumor-suppressive action of decorin observed in preclinical experiments to therapeutic interventions in human subjects.
Collapse
Affiliation(s)
| | - Anshul Saxena
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
- Baptist Health South Florida, Miami, FL, 33176, USA
| | | | - Yanjia Zhang
- Baptist Health South Florida, Miami, FL, 33176, USA
| | - Mayur Doke
- Miller School of Medicine, University of Miami, Coral Gables, FL, 33146, USA
| | - Sudheesh S Nair
- School of Veterinary Medicine, Ross University, Basseterre, Saint Kitts and Nevis
| | | | - Muni Rubens
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33172, USA.
- Universidad Espíritu Santo, Samborondón, Ecuador.
| |
Collapse
|
3
|
Reierson MM, Acharjee A. Unsupervised machine learning-based stratification and immune deconvolution of liver hepatocellular carcinoma. BMC Cancer 2025; 25:853. [PMID: 40349011 PMCID: PMC12066050 DOI: 10.1186/s12885-025-14242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and a leading cause of cancer-related deaths globally. The tumour microenvironment (TME) influences treatment response and prognosis, yet its heterogeneity remains unclear. METHODS The unsupervised machine learning methods- agglomerative hierarchical clustering, Multi-Omics Factor Analysis with K-means++, and an autoencoder with K-means++ - stratified patients using microarray data from HCC samples. Immune deconvolution algorithms estimated the proportions of infiltrating immune cells across identified clusters. RESULTS Thirteen genes were found to influence HCC subtyping in both primary and validation datasets, with three genes-TOP2A, DCN, and MT1E-showing significant associations with survival and recurrence. DCN, a known tumour suppressor, was significant across datasets and associated with improved survival, potentially by modulating the TME and promoting an anti-tumour immune response. CONCLUSIONS The discovery of the 13 conserved genes is an important step toward understanding HCC heterogeneity and the TME, potentially leading to the identification of more reliable biomarkers and therapeutic targets. We have stratified and validated the liver cancer populations. The findings suggest further research is needed to explore additional factors influencing the TME beyond gene expression, such as tumour microbiome and stromal cell interactions.
Collapse
Affiliation(s)
- Mae Montserrat Reierson
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Animesh Acharjee
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK.
- MRC Health Data Research UK (HDR), Midlands Site, UK.
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Liu L, Zhou Y, Ye Z, Chen Z, Yuan B, Guo L, Zhang H, Xu Y. Single-cell profiling uncovers the intricate pathological niche diversity in brain, lymph node, bone, and adrenal metastases of lung cancer. Discov Oncol 2025; 16:512. [PMID: 40208465 PMCID: PMC11985749 DOI: 10.1007/s12672-025-02269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
PURPOSE The aim of this study is to explore the pathological niche of cancer metastasis and the site-specific interactions between tumor cells and the microenvironment, understand the mechanisms driving metastasis progression and identify potential therapeutic targets. METHODS Data from four lung cancer metastasis datasets (GSE123902, GSE131907, GSE148071, and GSE186344) were downloaded and subjected to stringent quality control and filtering. Cell types were identified using canonical markers, and pseudotime trajectory analysis was performed to evaluate cell differentiation. Functional and pathway enrichment analyses, including ssGSEA and GO/KEGG, were conducted. CellphoneDB was used to analyze intercellular communication, ranking receptor-ligand interactions based on communication strength. RESULTS Eleven cell types were identified after quality control, revealing significant heterogeneity and site-specific functionality in lung cancer metastases. CTLs showed notable activity in antigen presentation and T-cell differentiation pathways, with DNAJB1⁺ CTLs playing a dominant role in cytotoxicity and immune regulation. B cells, myeloid cells, and CAFs were involved in immune modulation, defense, and matrix remodeling through specific signaling pathways. Tumor cell subclusters drove proliferation, migration, and immune evasion via immune-regulatory, Hippo, and TGF-beta pathways. No overlapping pathways were observed across metastatic sites. Cell communication analysis identified PPIA-BSG and APP-CD74 as key axes in brain and lymph node metastases, while FN1-Integrin and CTLA4-CD86 dominated in bone and adrenal metastases, respectively. CONCLUSIONS In summary, this study highlights the functional heterogeneity and site-specific interactions of cells in lung cancer metastases, providing insights into the mechanisms shaping metastatic niches and potential therapeutic strategies.
Collapse
Affiliation(s)
- Le Liu
- Huizhou Sixth People's Hospital, Huizhou, 516211, China
- Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuan Zhou
- Huizhou Sixth People's Hospital, Huizhou, 516211, China
| | - Zhenjun Ye
- Huizhou Sixth People's Hospital, Huizhou, 516211, China
| | - Zhiyong Chen
- Huizhou Sixth People's Hospital, Huizhou, 516211, China
| | - Benchao Yuan
- Huizhou Sixth People's Hospital, Huizhou, 516211, China
| | - Liyi Guo
- Huizhou Sixth People's Hospital, Huizhou, 516211, China.
| | - Haiyan Zhang
- Huizhou Sixth People's Hospital, Huizhou, 516211, China.
| | - Yuanyuan Xu
- Huizhou Sixth People's Hospital, Huizhou, 516211, China.
| |
Collapse
|
5
|
RAO YONG, CHEN XIAO, LI KAIYU, NIE MINHAI, LIU XUQIAN. Research progress on the role of decorin in the development of oral mucosal carcinogenesis. Oncol Res 2025; 33:577-590. [PMID: 40109852 PMCID: PMC11915041 DOI: 10.32604/or.2024.053119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 03/22/2025] Open
Abstract
Decorin (DCN) is primarily found in the connective tissues of various parts of the body, including the lungs, kidneys, bone tissue, aorta, and tendons. It is an important component of the extracellular matrix (ECM) and belongs to the class I small leucine-rich proteoglycans family. DCN is increasingly attracting attention due to its significant role in tumors, fibrotic diseases, and the regulation of vascular formation. Moreover, its anti-tumor properties have positioned it as a promising biomarker in the fight against cancer. Numerous studies have confirmed that DCN can exert inhibitory effects in various solid tumors, particularly in oral squamous cell carcinoma (OSCC), by activating its downstream pathways through binding with the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition (MET) receptor, or by stabilizing and enhancing the expression of the tumor suppressor gene p53 to mediate apoptosis in cancer cells that have undergone mutation. The occurrence of OSCC is a continuous and dynamic process, encompassing the transition from normal mucosa to oral potentially malignant disorders (OPMDs), and further progressing from OPMDs to the malignant transformation into OSCC. We have found that DCN may exhibit a bidirectional effect in the progression of oral mucosal carcinogenesis, showing a trend of initial elevation followed by a decline, which decreases with the differentiation of OSCC. In OPMDs, DCN exhibits high expression and may be associated with malignant transformation, possibly linked to the increased expression of P53 in OPMDs. In OSCC, the expression of DCN is reduced, which can impact OSCC angiogenesis, and inhibit tumor cell proliferation, migration, and invasion capabilities, serving as a potential marker for predicting adverse prognosis in OSCC patients. This article reviews the current research status of DCN, covering its molecular structure, properties, and involvement in the onset and progression of oral mucosal carcinogenesis. It elucidates DCN's role in this process and aims to offer insights for future investigations into its mechanism of action in oral mucosal carcinogenesis and its potential application in the early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- YONG RAO
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - XIAO CHEN
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - KAIYU LI
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - MINHAI NIE
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - XUQIAN LIU
- Department of Basic Medicine of Stomatology, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| |
Collapse
|
6
|
Mu X, Pan L, Wang X, Liu C, Li Y, Cai Y, He Z. Development of a prognostic model for hepatocellular carcinoma based on microvascular invasion characteristic genes by spatial transcriptomics sequencing. Front Immunol 2025; 16:1529569. [PMID: 40051627 PMCID: PMC11882567 DOI: 10.3389/fimmu.2025.1529569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Microvascular invasion (MVI) is an independent risk factor for the recurrence and metastasis of hepatocellular carcinoma (HCC), associated with poor prognosis. Thus, MVI has significant clinical value for the treatment selection and prognosis assessment of patients with HCC. However, there is no reliable and precise method for assessing the postoperative prognosis of MVI patients. This study aimed to develop a new HCC prognosis prediction model based on MVI characteristic genes through spatial transcriptomics sequencing, distinguishing between high-risk and low-risk patients and evaluating patient prognosis. In this study, four MVI samples with different grades were selected for spatial transcriptomic sequencing to screen for MVI region-specific genes. On this basis, an HCC prognostic model was constructed using univariate Cox regression analysis, LASSO regression analysis, random survival forest, and stepwise multivariate Cox regression analysis methods. We constructed a 7-gene prognostic model based on MVI characteristic genes and demonstrated its applicability for predicting the prognosis of HCC patients in three external validation cohorts. Furthermore, our model showed superior predictive performance compared with three published HCC prediction prognostic models and could serve as an independent prognostic factor for HCC. Additionally, single nucleus RNA sequencing analysis and multiple immunofluorescence images revealed an increased proportion of macrophages in high-risk patient samples, suggesting that HCC tumor cells may promote HCC metastasis through MIF-CD74 cell interactions. To sum up, we have developed a 7-gene biomarker based on MVI that can predict the survival rate of HCC patients at different stages. This predictive model can be used to categorize into high- and low- risk groups, which is of great significance for the prognostic assessment and personalized treatment of HCC patients.
Collapse
Affiliation(s)
- Xiaolan Mu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lili Pan
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Yu Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongchao Cai
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Municipal Education Commission, Shanghai, China
| |
Collapse
|
7
|
Buraschi S, Pascal G, Liberatore F, Iozzo RV. Comprehensive investigation of proteoglycan gene expression in breast cancer: Discovery of a unique proteoglycan gene signature linked to the malignant phenotype. PROTEOGLYCAN RESEARCH 2025; 3:e70014. [PMID: 40066261 PMCID: PMC11893098 DOI: 10.1002/pgr2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 03/14/2025]
Abstract
Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes. Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides a promising avenue for the development of recombinant proteoglycan-based therapies that could enhance the precision and efficacy of cancer treatment. In this study, we performed a comprehensive analysis of the proteoglycan gene landscape in human breast carcinomas. Leveraging the available wealth of genomic and clinical data regarding gene expression in breast carcinoma and using a machine learning model, we identified a unique gene expression signature composed of five proteoglycans differentially modulated in the tumor tissue: Syndecan-1 and asporin (upregulated) and decorin, PRELP and podocan (downregulated). Additional query of the breast carcinoma data revealed that serglycin, previously shown to be increased in breast carcinoma patients and mouse models and to correlate with a poor prognosis, was indeed decreased in the vast majority of breast cancer patients and its levels inversely correlated with tumor progression and invasion. This proteoglycan gene signature could provide novel diagnostic capabilities in breast cancer biology and highlights the need for further utilization of publicly available datasets for the clinical validation of preclinical experimental results.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federico Liberatore
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Wang Y, Li J, Li Y. Letter: Reflections on the significance of myokines in alcohol-associated liver disease. Aliment Pharmacol Ther 2024; 60:1635-1636. [PMID: 39394720 DOI: 10.1111/apt.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Affiliation(s)
- Yaomin Wang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
9
|
Assal RA, Abd El-Bary RBED, Youness RA, Abdelrahman MM, Zahran H, Hosny KA, Esmat G, Breuhahn K, El-Ekiaby N, Fawzy IO, Abdelaziz AI. OncomiR-181a promotes carcinogenesis by repressing the extracellular matrix proteoglycan decorin in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:337. [PMID: 39350070 PMCID: PMC11443891 DOI: 10.1186/s12876-024-03413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes. RESULTS DCN was under-expressed in 22 cirrhotic and HCC liver tissues compared to that in 11 healthy tissues of liver transplantation donors. Conversely, miR-181a was over-expressed in HCC liver tissues compared to that in healthy liver tissues. In silico analysis predicted that DCN 3'UTR harbors two high-score oncomiR-181a binding regions. This was validated by pmiRGLO luciferase reporter assay. Ectopic miR-181a expression into HuH-7 cells repressed the transcript and protein levels of DCN as assessed fluorometrically and by western blotting. DCN siRNAs showed similar results to miR-181a, where they both enhanced the cellular viability, proliferation, and clonogenicity. They also increased Myc and E2F and decreased p53 and Rb signaling as assessed using reporter vectors harboring p53, Rb, Myc, and E2F response elements. Our findings demonstrated that miR-181a directly downregulated the expression of its direct downstream target DCN, which in turn affected downstream targets related to cellular proliferation and apoptosis. CONCLUSION To our knowledge, this is the first study to unveil the direct targeting of DCN by oncomiR-181a. We also highlighted that miR-181a affects targets related to cellular proliferation in HCC which may be partly mediated through inhibition of DCN transcription. Thus, miR-181a could be a promising biomarker for the early detection and monitoring of liver cancer progression. This would pave the way for the future targeting of the oncomiR-181a as a therapeutic approach in liver cancer, where miR-181a-based therapy approach could be potentially combined with chemotherapy and immunotherapy for the management of liver cancer.
Collapse
Affiliation(s)
- Reem Amr Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development (HU), Cairo, Egypt
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), Cairo, Egypt
| | | | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, Egypt
| | | | - Hala Zahran
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karim Adel Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | | | |
Collapse
|
10
|
Aljagthmi WA, Alasmari MA, Daghestani MH, Al-Kharashi LA, Al-Mohanna FH, Aboussekhra A. Decorin (DCN) Downregulation Activates Breast Stromal Fibroblasts and Promotes Their Pro-Carcinogenic Effects through the IL-6/STAT3/AUF1 Signaling. Cells 2024; 13:680. [PMID: 38667295 PMCID: PMC11049637 DOI: 10.3390/cells13080680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Decorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels. Interestingly, breast cancer cells and the recombinant IL-6 protein, both known to activate fibroblasts in vitro, downregulated DCN in BSFs. Moreover, specific DCN knockdown in breast fibroblasts modulated the expression/secretion of several CAF biomarkers and cancer-promoting proteins (α-SMA, FAP- α, SDF-1 and IL-6) and enhanced the invasion/proliferation abilities of these cells through activation of the STAT3/AUF1 signaling. Furthermore, DCN-deficient fibroblasts promoted the epithelial-to-mesenchymal transition and stemness processes in BC cells in a paracrine manner, which increased their resistance to cisplatin. These DCN-deficient fibroblasts also enhanced angiogenesis and orthotopic tumor growth in mice in a paracrine manner. On the other hand, ectopic expression of DCN in CAFs suppressed their active features and their paracrine pro-carcinogenic effects. Together, the present findings indicate that endogenous DCN suppresses the pro-carcinogenic and pro-metastatic effects of breast stromal fibroblasts.
Collapse
Affiliation(s)
- Wafaa A. Aljagthmi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal A. Alasmari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Maha H. Daghestani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Layla A. Al-Kharashi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Falah H. Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
11
|
Li T, Zhou Z, Xie Z, Fan X, Zhang Y, Zhang Y, Song X, Ruan Y. Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing. J Cancer Res Clin Oncol 2023; 149:11379-11395. [PMID: 37369799 DOI: 10.1007/s00432-023-05011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are an essential component of the tumor immune microenvironment that are involved in extracellular matrix (ECM) remodeling. We aim to investigate the characteristics of CAFs in prostate cancer and develop a biochemical recurrence (BCR)-related CAF signature for predicting the prognosis of PCa patients. METHODS The bulk RNA-seq and relevant clinical information were obtained from the TCGA and GEO databases, respectively. The infiltration scores of CAFs in prostate cancer patients were calculated using the MCP counter and EPIC algorithms. The single-cell RNA sequencing (scRNA-seq) was downloaded from the GEO database. Subsequently, univariate Cox regression analysis was employed to identify prognostic genes associated with CAFs. We identified two subtypes (C1 and C2) of prostate cancer that were associated with CAFs via non-negative matrix factorization (NMF) clustering. In addition, the BCR-related CAF signatures were constructed using Lasso regression analysis. Finally, a nomogram model was established based on the risk score and clinical characteristics of the patients. RESULTS Initially, we found that patients with high CAF infiltration scores had shorter biochemical recurrence-free survival (BCRFS) times. Subsequently, CAFs in four pairs of tumors and paracancerous tissues were identified. We discovered 253 significantly differentially expressed genes, of which 13 had prognostic significance. Using NMF clustering, we divided PCa patients into C1 and C2 subgroups, with the C1 subgroup having a worse prognosis and substantially enriched cell cycle, homologous recombination, and mismatch repair pathways. Furthermore, a BCR-related CAFs signature was established. Multivariate COX regression analysis confirmed that the BCR-related CAFs signature was an independent prognostic factor for BCR in PCa. In addition, the nomogram was based on the clinical characteristics and risk scores of the patient and demonstrated high accuracy and reliability for predicting BCR. Lastly, our findings indicate that the risk score may be a useful tool for predicting PCa patients' sensitivity to immunotherapy and drug treatment. CONCLUSION NMF clustering based on CAF-related genes revealed distinct TME immune characteristics between groups. The BCR-related CAF signature accurately predicted prognosis and immunotherapy response in prostate cancer patients, offering a promising new approach to cancer treatment.
Collapse
Affiliation(s)
- Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zeng Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xiaodong Song
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| |
Collapse
|
12
|
Dumond Bourie A, Potier JB, Pinget M, Bouzakri K. Myokines: Crosstalk and Consequences on Liver Physiopathology. Nutrients 2023; 15:nu15071729. [PMID: 37049569 PMCID: PMC10096786 DOI: 10.3390/nu15071729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease mainly characterized by the hepatic accumulation of lipid inducing a deregulation of β-oxidation. Its advanced form is non-alcoholic steatohepatitis (NASH), which, in addition to lipid accumulation, induces hepatocellular damage, oxidative stress and fibrosis that can progress to cirrhosis and to its final stage: hepatocellular carcinoma (HCC). To date, no specific therapeutic treatment exists. The implications of organ crosstalk have been highlighted in many metabolic disorders, such as diabetes, metabolic-associated liver diseases and obesity. Skeletal muscle, in addition to its role as a reservoir and consumer of energy and carbohydrate metabolism, is involved in this inter-organs’ communication through different secreted products: myokines, exosomes and enzymes, for example. Interestingly, resistance exercise has been shown to have a beneficial impact on different metabolic pathways, such as lipid oxidation in different organs through their secreted products. In this review, we will mainly focus on myokines and their effects on non-alcoholic fatty liver disease, and their complication: non-alcoholic steatohepatitis and HCC.
Collapse
Affiliation(s)
- Aurore Dumond Bourie
- European Center for the Study of Diabetes (CeeD), Research Unit of Strasbourg University “Diabetes and Therapeutics”, UR7294, 67200 Strasbourg, France
| | | | - Michel Pinget
- European Center for the Study of Diabetes (CeeD), Research Unit of Strasbourg University “Diabetes and Therapeutics”, UR7294, 67200 Strasbourg, France
| | - Karim Bouzakri
- European Center for the Study of Diabetes (CeeD), Research Unit of Strasbourg University “Diabetes and Therapeutics”, UR7294, 67200 Strasbourg, France
- ILONOV, 67200 Strasbourg, France
| |
Collapse
|
13
|
Zhang M, Ding Q, Bian C, Su J, Xin Y, Jiang X. Progress on the molecular mechanism of portal vein tumor thrombosis formation in hepatocellular carcinoma. Exp Cell Res 2023; 426:113563. [PMID: 36944406 DOI: 10.1016/j.yexcr.2023.113563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, with poor prognosis and high mortality. Early-stage HCC has no obvious clinical symptoms, and most patients are already at an advanced stage when they are diagnosed. Portal vein tumor thrombus (PVTT) is the most common complication and a poor prognostic factor for HCC, which frequently leads to portal vein hypertension, ascites, gastrointestinal bleeding, and tumor metastasis. The formation of PVTT is related to the complex structure and hemodynamic changes of the portal vein and is closely related to changes at the cellular and molecular levels. The differentially-expressed genes (DEGs) between PVTT and primary tumor (PT) suggest that the two tissues may have different clonal origins. Epigenetic and proteomic analyses also suggest complex and diverse mechanisms for the formation of PVTT. In addition, the tumor microenvironment and energy metabolism pathways are interrelated in regulating the invasion and progression of PVTT. Aerobic glycolysis and the tumor immune microenvironment have been the focus of recent studies on PVTT. In this review, we summarize the mechanism of PVTT formation at the cellular and molecular levels to provide information to guide better prevention and treatment of PVTT in the clinic.
Collapse
Affiliation(s)
- Min Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Qiuhui Ding
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
14
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Prognostic Value of an Integrin-Based Signature in Hepatocellular Carcinoma and the Identification of Immunological Role of LIMS2. DISEASE MARKERS 2022; 2022:7356297. [PMID: 36212176 PMCID: PMC9537015 DOI: 10.1155/2022/7356297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Objective Evidence proves that integrins affect almost every step of hepatocellular carcinoma (HCC) progression. The current study aimed at constructing an integrin-based signature for prognostic prediction of HCC. Methods TCGA-LIHC and ICGC-LIRI-JP cohorts were retrospectively analyzed. Integrin genes were analyzed via univariate Cox regression, followed by generation of a prognostic signature with LASSO approach. Independent factors were input into the nomogram. WGCNA was adopted to select this signature-specific genes. Gene Ontology (GO) enrichment together with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to explore the function of the dysregulated genes. The abundance of tumor microenvironment components was estimated with diverse popular computational methods. The relative importance of genes from this signature was estimated through random-forest method. Results Eight integrin genes (ADAM15, CDC42, DAB2, ITGB1BP1, ITGB5, KIF14, LIMS2, and SELP) were adopted to define an integrin-based signature. Each patient was assigned the riskScore. High-riskScore subpopulation exhibited worse overall survival, with satisfying prediction efficacy. Also, the integrin-based signature was independent of routine clinicopathological parameters. The nomogram (comprising integrin-based signature, and stage) accurately inferred prognostic outcome, with the excellent net benefit. Genes with the strongest positive interaction to low-riskScore were primarily linked to biosynthetic, metabolic, and catabolic processes and immune pathways; those with the strongest association with high-riskScore were principally associated with diverse tumorigenic signaling. The integrin-based signature was strongly linked with tumor microenvironment components. Among the genes from this signature, LIMS2 possessed the highest importance, and its expression was proven through immunohistochemical staining. Conclusion Altogether, our study defined a quantitative integrin-based signature that reliably assessed HCC prognosis and tumor microenvironment features, which possessed the potential as a tool for prognostic prediction.
Collapse
|