1
|
Jiang L, Xiao J, Xie L, Zheng F, Ge F, Zhao X, Qiang R, Fang J, Liu Z, Xu Z, Chen R, Wang D, Liu Y, Xia Q. The emerging roles of N6-methyladenosine (m6A) deregulation in polycystic ovary syndrome. J Ovarian Res 2025; 18:107. [PMID: 40410881 PMCID: PMC12100877 DOI: 10.1186/s13048-025-01690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine metabolic syndrome characterized by ovulation disorders, hyperandrogenemia, and polycystic ovaries, which seriously affect the psychological and physical health of childbearing women. N6-methyladenosine (m6A), as the most common mRNA epigenetic modification in eukaryotes, is vital for developing the female reproductive system and reproductive diseases. In recent years, an increasing number of studies have revealed the mechanisms by which m6A modifications and their related proteins are promoting the development of PCOS, including writers, erasers and readers. In this work, we reviewed the research progress of m6A in the pathophysiological development of PCOS from the starting point of PCOS clinical features, included the recent studies or those with significant findings related to m6A and PCOS, summarized the current commonly used therapeutic methods in PCOS and the possible targeted therapies against the m6A mechanism, and looked forward to future research directions of m6A in PCOS. With the gradual revelation of the m6A mechanism, m6A and its related proteins are expected to become a great field for PCOS treatment.
Collapse
Affiliation(s)
- Leyi Jiang
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liangzhen Xie
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruonan Qiang
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Fang
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhinan Liu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Xu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Chen
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yanfeng Liu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Qing Xia
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Naderi N, Tavalaee M, Nasr-Esfahani MH. The epigenetic approach of varicocele: a focus on sperm DNA and m6A-RNA methylation. Hum Reprod Update 2025; 31:81-101. [PMID: 39673728 DOI: 10.1093/humupd/dmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal dilation and torsion of the pampiniform venous plexus in the scrotum due to venous reflux, primarily affecting the left side. It affects 15% of men and is a prevalent contributor to male infertility. Varicocele is a complex disorder influenced by genetic, epigenetic, and environmental factors. Epigenetic modifications, which regulate genome activity independently of DNA or RNA sequences, may contribute to the development and severity of varicocele. These include DNA methylation, histone modifications, and RNA modifications like N6-methyladenosine (m6A). Irregularities in DNA and m6A-RNA methylation during spermatogenesis can cause gene expression abnormalities, DNA damage, and decreased fertility in varicocele patients. OBJECTIVE AND RATIONALE The review aims to comprehensively understand the underlying mechanisms of varicocele, a condition that can significantly impact male fertility. By exploring the role of methylation modifications, specifically DNA and m6A-RNA methylation, the review aims to synthesize evidence from basic, preclinical, and clinical research to expand the existing knowledge on this subject. The ultimate goal is to identify potential avenues for developing targeted treatments that can effectively improve varicocele and ultimately increase sperm quality in affected individuals. SEARCH METHODS A thorough investigation of the scientific literature was conducted through searches in PubMed, Google Scholar, and Science Direct databases until May 2024. All studies investigating the relationship between DNA and m6A-RNA methylation and male infertility, particularly varicocele were reviewed, and the most pertinent reports were included. Keywords such as varicocele, epigenetics, DNA methylation, m6A-RNA methylation, hypermethylation, hypomethylation, spermatozoa, semen parameters, spermatogenesis, and male infertility were used during the literature search, either individually or in combination. OUTCOMES The sperm has a specialized morphology essential for successful fertilization, and its epigenome is unique, potentially playing a key role in embryogenesis. Sperm DNA and RNA methylation, major epigenetic marks, regulate the expression of testicular genes crucial for normal spermatogenesis. This review explores the role of DNA and m6A-RNA methylation, in responding to oxidative stress and how various nutrients influence their function in varicocele condition. Evidence suggests a potential link between varicocele and aberrant DNA/m6A-RNA methylation patterns, especially hypomethylation, but the body of evidence is still limited. Further studies are needed to understand how abnormal expression of DNA/m6A-RNA methylation regulators affects testicular gene expression. Thus, analyzing sperm DNA 5mC/5hmC levels and m6A-RNA methylation regulators may reveal spermatogenesis defects and predict reproductive outcomes. WIDER IMPLICATIONS Nutri-epigenomics is an emerging field that could enhance the knowledge and management of diseases with unpredictable risks and consequences, even among individuals with similar lifestyles, by elucidating the influence of nutrition on DNA/m6A-RNA methylation through one-carbon metabolism. However, the importance of one-carbon metabolism to varicocele is not well-recognized. Health status and diet influence one-carbon metabolism and its associated DNA/m6A-RNA methylation modification. Future research should identify optimal methylation patterns that promote health and investigate modulating one-carbon metabolism to achieve this. Furthermore, additional studies are necessary to develop personalized dietary strategies through clinical and longitudinal research. However, a research gap exists on dietary interventions utilizing epigenetics as a therapeutic method for treating varicocele. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Pooyesh & Rooyesh Fertility Center, Isfahan, Iran
| |
Collapse
|
3
|
Cao Y, Qiu G, Dong Y, Zhao W, Wang Y. Exploring the role of m 6 A writer RBM15 in cancer: a systematic review. Front Oncol 2024; 14:1375942. [PMID: 38915367 PMCID: PMC11194397 DOI: 10.3389/fonc.2024.1375942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
In the contemporary epoch, cancer stands as the predominant cause of premature global mortality, necessitating a focused exploration of molecular markers and advanced therapeutic strategies. N6-methyladenosine (m6A), the most prevalent mRNA modification, undergoes dynamic regulation by enzymes referred to as methyltransferases (writers), demethylases (erasers), and effective proteins (readers). Despite lacking methylation activity, RNA-binding motif protein 15 (RBM15), a member of the m6A writer family, assumes a crucial role in recruiting the methyltransferase complex (MTC) and binding to mRNA. Although the impact of m6A modifications on cancer has garnered widespread attention, RBM15 has been relatively overlooked. This review briefly outlines the structure and operational mechanism, and delineates the unique role of RBM15 in various cancers, shedding light on its molecular basis and providing a groundwork for potential tumor-targeted therapies.
Collapse
Affiliation(s)
- Yuan Cao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Yu Dong
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Zhao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Ban Z, Li Z, Xing S, Ye Y. IGF2BP3 regulates the expression of RRM2 and promotes the progression of rheumatoid arthritis via RRM2/Akt/MMP-9 pathway. PLoS One 2024; 19:e0303593. [PMID: 38820515 PMCID: PMC11142689 DOI: 10.1371/journal.pone.0303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common inflammatory and autoimmune disease. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) is a crucial and a rate-limiting enzyme responsible for deoxynucleotide triphosphate(dNTP) production. We have found a high expression level of RRM2 in patients with RA, but the molecular mechanism of its action remains unclear. METHODS We analyzed the expression of hub genes in RA using GSE77298 datasets downloaded from Gene Expression Omnibus database. RRM2 and insulin-like growth factor-2 messenger ribonucleic acid (mRNA)-binding protein 3 (IGF2BP3) gene knockdown was achieved by infection with lentiviruses. The expression of RRM2, IGF2BP3, matrix metalloproteinase (MMP)-1, and MMP-9 were detected via western blotting assay. Cell viability was detected via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MeRIP-qRT-PCR was performed to test the interaction of IGF2BP3 and RRM2 mRNA via m6A modification. Cell proliferation was determined by clone formation assay. Migration and invasion assays were performed using transwell Boyden chamber. RESULTS RRM2 and IGF2BP3 were highly expressed in clinical specimens and tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β-stimulated synovial cells. RRM2 and IGF2BP3 knockdown inhibited the proliferation, migration, and invasion of MH7A cells. The inhibitory effects of IGF2BP3 knockdown were effectively reversed by simultaneously overexpressing RRM2 in MH7A cells. By analyzing N6-methyladenosine (m6A)2Target database, five m6A regulatory target binding sites for IGF2BP3 were identified in RRM2 mRNA, suggesting a direct relationship between IGF2BP3 and RRM2 mRNA. Additionally, in RRM2 small hairpin (sh)RNA lentivirus-infected cells, the levels of phosphorylated Akt and MMP-9 were significantly decreased compared with control shRNA lentivirus-infected cells. CONCLUSION The present study demonstrated that RRM2 promoted the Akt phosphorylation leading to high expression of MMP-9 to promote the migration and invasive capacities of MH7A cells. Overall, IGF2BP promotes the expression of RRM2, and regulates the migration and invasion of MH7A cells via Akt/MMP-9 pathway to promote RA progression.
Collapse
Affiliation(s)
- Zhaonan Ban
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| | - Zhengjiang Li
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| | - Shuxing Xing
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| | - Yongjie Ye
- Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, 611130, China
| |
Collapse
|
5
|
Zhang M, Nie J, Chen Y, Li X, Chen H. Connecting the Dots: N6-Methyladenosine (m 6 A) Modification in Spermatogenesis. Adv Biol (Weinh) 2023; 7:e2300068. [PMID: 37353958 DOI: 10.1002/adbi.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Indexed: 06/25/2023]
Abstract
N6-methyladenosine (m6 A) is the most common RNA modification found in eukaryotes and is involved in multiple biological processes, including neuronal development, tumorigenesis, and gametogenesis. It is well known that methylation-modifying enzymes (classified into writers, erasers, and readers) mediate catalysis, clearance, and recognition of m6 A. Recent studies suggest that these genes may be associated with spermatogenesis. Numerous studies have revealed the m6 A role during spermatogenesis. However, the expression patterns and relationships of these m6 A enzymes during various stages of spermatogenesis remain unknown. In this review, it is aimed to provide an overview of m6 A enzyme functions and elucidate their potential mechanisms and regulatory relationships at a specific phase during spermatogenesis, providing new insights into the m6 A modification underlying the spermatogenesis process.
Collapse
Affiliation(s)
- Mengya Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Lianhua Road No. 1120, Futian District, Shenzhen, Guangdong Province, 518000, P. R. China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| |
Collapse
|
6
|
hong J, zhang L, peng H, Lihong J. Oncogenic role of HNRNPC in multiple cancer types, with a particular focus on LUAD, using a pan-cancer analysis and cell line experiments. J Environ Pathol Toxicol Oncol 2022; 41:77-93. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022042822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|