1
|
Oerke EC, Steiner U. Intra-Leaf Variability of Incubation Period Sheds New Light on the Lifestyle of Cercospora beticola in Sugar Beets. J Fungi (Basel) 2025; 11:211. [PMID: 40137249 PMCID: PMC11943282 DOI: 10.3390/jof11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The length of incubation period, i.e., the time between first contact of host and pathogen and the appearance of symptoms, varies among diseases and depends on environmental conditions. Cercospora beticola is the most important fungal pathogen in sugar beet production worldwide, as Cercospora leaf spot (CLS) reduces the leaf area contributing to yield formation. Using sugar beet cultivars differing in CLS resistance, a single infection period of C. beticola resulted in minor differences in the incubation period among host genotypes and among individual plants of cultivars, greater differences among leaves within plants, and substantial variation within individual leaves. Under greenhouse conditions not suitable for secondary infections, the first CLS lesions appeared 10 days after inoculation; however, the number of leaf spots and CLS severity further increased significantly for another 7 to 17 days. A geographic information system approach enabled the tracking of colony appearance and growth of all CLSs on inoculated leaves for up to 27 days. Asymptomatic colonization of leaves was associated with thick hyphae which switched to thin hyphae or melanization after lesion appearance. The lifestyle of C. beticola-intercellular tissue colonization, triggering of necrotic host reaction-is discussed considering the experimental results as well as literature resources.
Collapse
Affiliation(s)
- Erich-Christian Oerke
- Institute of Crop Science and Resource Conservation—Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53113 Bonn, Germany;
| | | |
Collapse
|
2
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
3
|
Kalicharan RE, Fernandez J. Triple Threat: How Global Fungal Rice and Wheat Pathogens Utilize Comparable Pathogenicity Mechanisms to Drive Host Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:173-186. [PMID: 39807944 DOI: 10.1094/mpmi-09-24-0106-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops such as rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as Magnaporthe oryzae, the causative agent of rice blast disease; Fusarium graminearum, responsible for Fusarium head blight in wheat; and Zymoseptoria tritici, the source of Septoria tritici blotch. All three pathogens are hemibiotrophic, initially colonizing the host through a biotrophic, symptomless lifestyle, followed by causing cell death through the necrotrophic phase. Additionally, they deploy a diverse range of effectors, including proteinaceous and non-proteinaceous molecules, to manipulate fundamental host cellular processes, evade immune responses, and promote disease progression. This review discusses recent advances in understanding the effector biology of these three pathogens, highlighting both the shared functionalities and unique molecular mechanisms they employ to regulate conserved elements of host pathways, such as directly manipulating gene transcription in host nuclei, disrupting reactive oxygen species signaling, interfering with protein stability, and undermining host structural integrity. By detailing these complex interactions, the review explores potential targets for innovative control measures and emphasizes the need for further research to develop effective strategies against these destructive pathogens in the face of evolving environmental and agricultural challenges. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rachel E Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
4
|
Riglet L, Hok S, Kebdani-Minet N, Le Berre J, Gourgues M, Rozier F, Bayle V, Bancel-Vallée L, Allasia V, Keller H, Da Rocha M, Attard A, Fobis-Loisy I. Invasion of the stigma by oomycete pathogenic hyphae or pollen tubes: striking similarities and differences. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6258-6274. [PMID: 39028677 DOI: 10.1093/jxb/erae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Both the pollen tube and hyphae of filamentous pathogens penetrate the outer layer of the host and then grow within host tissues. Early epidermal responses are decisive for the outcome of these two-cell interaction processes. We identified a single cell type, the papilla in the stigma of Arabidospis, as a tool to conduct a comprehensive comparative analysis on how an epidermal cell responds to the invasion of an unwanted pathogen or a welcome pollen tube. We showed that Phytophtora parasitica, a root oomycete, effectively breaches the stigmatic cell wall and develops as a biotroph within the papilla cytoplasm. These invasive features resemble the behaviour exhibited by the pathogen within its natural host cell, but diverge from the manner in which the pollen tube progresses, being engulfed within the papilla cell wall. Quantitative analysis revealed that both invaders trigger reorganization of the stigmatic endomembrane system and the actin cytoskeleton. While some remodelling processes are shared between the two interactions, others appear more specific towards the respective invader. These findings underscore the remarkable ability of an epidermal cell to differentiate between two types of invaders, thereby enabling it to trigger the most suitable response during the onset of invasion.
Collapse
Affiliation(s)
- Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| | - Sophie Hok
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Naïma Kebdani-Minet
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Joëlle Le Berre
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Mathieu Gourgues
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| | - Lesli Bancel-Vallée
- Unité de Bordeaux, Bordeaux Imaging Center, 146 rue Lèo Saignat CS 61292, F-33076 Bordeaux, France
| | - Valérie Allasia
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Harald Keller
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Martine Da Rocha
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Agnés Attard
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342 Lyon, France
| |
Collapse
|
5
|
Bundó M, Val-Torregrosa B, Martín-Cardoso H, Ribaya M, Campos-Soriano L, Bach-Pages M, Chiou TJ, San Segundo B. Silencing Osa-miR827 via CRISPR/Cas9 protects rice against the blast fungus Magnaporthe oryzae. PLANT MOLECULAR BIOLOGY 2024; 114:105. [PMID: 39316277 PMCID: PMC11422438 DOI: 10.1007/s11103-024-01496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression at the post-transcriptional level. In plants, miRNAs participate in diverse developmental processes and adaptive responses to biotic and abiotic stress. MiR827 has long been recognized to be involved in plant responses to phosphate starvation. In rice, the miR827 regulates the expression of OsSPX-MFS1 and OsSPX-MFS2, these genes encoding vacuolar phosphate transporters. In this study, we demonstrated that miR827 plays a role in resistance to infection by the fungus Magnaporthe oryzae in rice. We show that MIR827 overexpression enhances susceptibility to infection by M. oryzae which is associated to a weaker induction of defense gene expression during pathogen infection. Conversely, CRISPR/Cas9-induced mutations in the MIR827 gene completely abolish miR827 production and confer resistance to M. oryzae infection. This resistance is accompanied by a reduction of leaf Pi content compared to wild-type plants, whereas Pi levels increase in leaves of the blast-susceptible miR827 overexpressor plants. In wild-type plants, miR827 accumulation in leaves decreases during the biotrophic phase of the infection process. Taken together, our data indicates that silencing MIR827 confers resistance to M. oryzae infection in rice while further supporting interconnections between Pi signaling and immune signaling in plants. Unravelling the role of miR827 during M. oryzae infection provides knowledge to improve blast resistance in rice by CRISPR/Cas9-editing of MIR827.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Beatriz Val-Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - María Ribaya
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Lidia Campos-Soriano
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Marcel Bach-Pages
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica No 128, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
6
|
Sharma G, Dwibedi V, Seth CS, Singh S, Ramamurthy PC, Bhadrecha P, Singh J. Direct and indirect technical guide for the early detection and management of fungal plant diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100276. [PMID: 39345949 PMCID: PMC11428012 DOI: 10.1016/j.crmicr.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Fungal plant diseases are a major threat to plants and vegetation worldwide. Recent technological advancements in biotechnological tools and techniques have made it possible to identify and manage fungal plant diseases at an early stage. These techniques include direct methods, such as ELISA, immunofluorescence, PCR, flow cytometry, and in-situ hybridization, as well as indirect methods, such as fluorescence imaging, hyperspectral techniques, thermography, biosensors, nanotechnology, and nano-enthused biosensors. Early detection of fungal plant diseases can help to prevent major losses to plantations. This is because early detection allows for the implementation of control measures, such as the use of fungicides or resistant varieties. Early detection can also help to minimize the spread of the disease to other plants. The techniques discussed in this review provide a valuable resource for researchers and farmers who are working to prevent and manage fungal plant diseases. These techniques can help to ensure food security and protect our valuable plant resources.
Collapse
Affiliation(s)
- Gargi Sharma
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Vagish Dwibedi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
- Agriculture Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012
| | - Pooja Bhadrecha
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Lumami, Nagaland, India
| |
Collapse
|
7
|
Vargas-Muñiz JM. Adaptive fungal invasion of bat cells. Science 2024; 385:142-143. [PMID: 38991085 DOI: 10.1126/science.adq5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A fungus uses different cell entry strategies, depending on its host's hibernation status.
Collapse
Affiliation(s)
- José M Vargas-Muñiz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Early Career Whitman Fellow, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
8
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
9
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Masaki HI, de Villiers S, Qi P, Prado KA, Kaimenyi DK, Tesfaye K, Alemu T, Takan J, Dida M, Ringo J, Mbinda W, Khang CH, Devos KM. Host Specificity Controlled by PWL1 and PWL2 Effector Genes in the Finger Millet Blast Pathogen Magnaporthe oryzae in Eastern Africa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:584-591. [PMID: 37245238 DOI: 10.1094/mpmi-01-23-0012-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Magnaporthe oryzae, a devastating pathogen of finger millet (Eleusine coracana), secretes effector molecules during infection to manipulate host immunity. This study determined the presence of avirulence effector genes PWL1 and PWL2 in 221 Eleusine blast isolates from eastern Africa. Most Ethiopian isolates carried both PWL1 and PWL2. Kenyan and Ugandan isolates largely lacked both genes, and Tanzanian isolates carried either PWL1 or lacked both. The roles of PWL1 and PWL2 towards pathogenicity on alternative chloridoid hosts, including weeping lovegrass (Eragrostis curvula), were also investigated. PWL1 and PWL2 were cloned from Ethiopian isolate E22 and were transformed separately into Ugandan isolate U34, which lacked both genes. Resulting transformants harboring either gene gained varying degrees of avirulence on Eragrostis curvula but remained virulent on finger millet. Strains carrying one or both PWL1 and PWL2 infected the chloridoid species Sporobolus phyllotrichus and Eleusine tristachya, indicating the absence of cognate resistance (R) genes for PWL1 and PWL2 in these species. Other chloridoid grasses, however, were fully resistant, regardless of the presence of one or both PWL1 and PWL2, suggesting the presence of effective R genes against PWL and other effectors. Partial resistance in some Eragrostis curvula accessions to some blast isolates lacking PWL1 and PWL2 also indicated the presence of other interactions between fungal avirulence (AVR) genes and host resistance (R) genes. Related chloridoid species thus harbor resistance genes that could be useful to improve finger millet for blast resistance. Conversely, loss of AVR genes in the fungus could expand its host range, as demonstrated by the susceptibility of Eragrostis curvula to finger millet blast isolates that had lost PWL1 and PWL2. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Hosea Isanda Masaki
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
| | - Santie de Villiers
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Peng Qi
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
- Institute of Plant Breeding, Genetics and Genomics Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Kathryn A Prado
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
| | - Davies Kiambi Kaimenyi
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Kassahun Tesfaye
- Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | | | - John Takan
- National Semi-Arid Resources Research Institute Serere, Soroti, Uganda
| | | | - Justin Ringo
- Tanzania Agricultural Research Institute, Illonga, Tanzania
| | - Wilton Mbinda
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
| | - Chang Hyun Khang
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
| | - Katrien M Devos
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
- Institute of Plant Breeding, Genetics and Genomics Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
11
|
Zhu J, Moreno-Pérez A, Coaker G. Understanding plant pathogen interactions using spatial and single-cell technologies. Commun Biol 2023; 6:814. [PMID: 37542114 PMCID: PMC10403533 DOI: 10.1038/s42003-023-05156-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Plants are in contact with diverse pathogens and microorganisms. Intense investigation over the last 30 years has resulted in the identification of multiple immune receptors in model and crop species as well as signaling overlap in surface-localized and intracellular immune receptors. However, scientists still have a limited understanding of how plants respond to diverse pathogens with spatial and cellular resolution. Recent advancements in single-cell, single-nucleus and spatial technologies can now be applied to plant-pathogen interactions. Here, we outline the current state of these technologies and highlight outstanding biological questions that can be addressed in the future.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Nobori T, Ecker JR. Yet uninfected? Resolving cell states of plants under pathogen attack. CELL REPORTS METHODS 2023; 3:100538. [PMID: 37533641 PMCID: PMC10391557 DOI: 10.1016/j.crmeth.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Although we have made significant strides in unraveling plant responses to pathogen attacks at the tissue or major cell type scale, a comprehensive understanding of individual cell responses still needs to be achieved. Addressing this gap, Zhu et al. employed single-cell transcriptome analysis to unveil the heterogeneous responses of plant cells when confronted with bacterial pathogens.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
13
|
Sha G, Sun P, Kong X, Han X, Sun Q, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q, Zhou Y, Zhou W, Jain R, Gao J, Huang R, Chen X, Zheng L, Zhang W, Qin Z, Zhou Q, Zeng Q, Xie K, Xu J, Chiu TY, Guo L, Mortimer JC, Boutté Y, Li Q, Kang Z, Ronald PC, Li G. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 2023; 618:1017-1023. [PMID: 37316672 PMCID: PMC11575942 DOI: 10.1038/s41586-023-06205-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.
Collapse
Affiliation(s)
- Gan Sha
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Kong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yun Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiuwen Gong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wenqing Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Renliang Huang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xiaoyang Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wanying Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qi Zhou
- BGI-Shenzhen, Shenzhen, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | | | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jenny C Mortimer
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China.
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
14
|
Fernandez J. The Phantom Menace: latest findings on effector biology in the rice blast fungus. ABIOTECH 2023; 4:140-154. [PMID: 37581025 PMCID: PMC10423181 DOI: 10.1007/s42994-023-00099-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/11/2023] [Indexed: 08/16/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungus responsible for the economically devastating and recalcitrant rice blast disease. However, the blast fungus is not only restricted to rice plants as it can also infect wheat, millet, and other crops. Despite previous outstanding discoveries aimed to understand and control the disease, the fungus remains one of the most important pathogens that threatens global food security. To cause disease, M. oryzae initiates morphological changes to attach, penetrate, and colonize rice cells, all while suppressing plant immune defenses that would otherwise hinder its proliferation. As such, M. oryzae actively secretes a battery of small proteins called "effectors" to manipulate host machinery. In this review, we summarize the latest findings in effector identification, expression, regulation, and functionality. We review the most studied effectors and their roles in pathogenesis. Additionally, we discern the current methodologies to structurally catalog effectors, and we highlight the importance of climate change and its impact on the future of rice blast disease.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Microbiology and Cell Science at University of Florida-Institute of Food and Agricultural Science, Gainesville, FL 32611 USA
| |
Collapse
|
15
|
Oliveira-Garcia E, Tamang TM, Park J, Dalby M, Martin-Urdiroz M, Rodriguez Herrero C, Vu AH, Park S, Talbot NJ, Valent B. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. THE PLANT CELL 2023:koad094. [PMID: 36976907 DOI: 10.1093/plcell/koad094] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker co-localization, gene silencing and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by clathrin-mediated endocytosis in BICs and suggests a role for M. oryzae effectors in co-opting plant endocytosis.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Jungeun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Clara Rodriguez Herrero
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - An Hong Vu
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Ma X, Duan G, Chen H, Tang P, Su S, Wei Z, Yang J. Characterization of infected process and primary mechanism in rice Acuce defense against rice blast fungus, Magnaporthe oryzae. PLANT MOLECULAR BIOLOGY 2022; 110:219-234. [PMID: 35759052 DOI: 10.1007/s11103-022-01296-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Identification of infection process and defense response during M. oryzae infecting Acuce. Magnaporthe oryzae is a destructive rice pathogen. Recent studies have focused on the initial infectious stage, with a few studies conducted to elucidate the characteristics of the late infectious stages. This study aims to decipher the characteristics at different stages (biotrophic, biotrophy-necrotrophy switch (BNS), and necrotrophic) between the interaction of two M. oryzae-rice combinations and investigate the resistance mechanisms of rice to M. oryzae using cytological and molecular methods. The biotrophic phase of M. oryzae-LTH compatible interaction was found to be longer than that of M. oryzae-Acuce incompatible interaction. We also found that jasmonic acid (JA) signaling plays an important role in defense by regulating antimicrobial compound accumulation in infected Acuce via a synergistic interaction of JA-salicylic acid (SA) and JA-ethylene (ET). In infected LTH, JA-ET/JA-SA showed antagonistic interaction. Ibuprofen (IBU) is a JA inhibitor. Despite the above findings, we found that exogenous JA-Ile and IBU significantly alleviated blast symptoms in infected LTH at 36 hpi (biotrophic) and 72 hpi (BNS), indicating these two-time points may be critical for managing blast disease in the compatible interaction. Conversely, IBU significantly increased blast symptoms on the infected Acuce at 36 hpi, confirming that the JA signal plays a central role in the defense response in infected Acuce. According to transcriptional analysis, the number of genes enriched in the plant hormone signal pathway was significantly higher than in other pathways. Our findings suggested that JA-mediated defense mechanism is essential in regulating Acuce resistance, particularly during the biotrophic and BNS phases.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shunyu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhaoxia Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
17
|
de Oliveira Silva A, Aliyeva-Schnorr L, Wirsel SGR, Deising HB. Fungal Pathogenesis-Related Cell Wall Biogenesis, with Emphasis on the Maize Anthracnose Fungus Colletotrichum graminicola. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070849. [PMID: 35406829 PMCID: PMC9003368 DOI: 10.3390/plants11070849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 05/25/2023]
Abstract
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant invasion. Several factors required for virulence or pathogenicity have been identified in different Colletotrichum species, and adaptation of cell wall biogenesis to distinct stages of pathogenesis has been identified as a major pre-requisite for the establishment of a compatible parasitic fungus-plant interaction. Here, we highlight aspects of fungal cell wall biogenesis during plant infection, with emphasis on the maize leaf anthracnose and stalk rot fungus, Colletotrichum graminicola.
Collapse
|
18
|
Koley P, Brahmachari S, Saha A, Deb C, Mondal M, Das N, Das A, Lahiri S, Das M, Thakur M, Kundu S. Phytohormone Priming of Tomato Plants Evoke Differential Behavior in Rhizoctonia solani During Infection, With Salicylate Priming Imparting Greater Tolerance Than Jasmonate. FRONTIERS IN PLANT SCIENCE 2021; 12:766095. [PMID: 35082805 PMCID: PMC8784698 DOI: 10.3389/fpls.2021.766095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 05/14/2023]
Abstract
In the field of phytohormone defense, the general perception is that salicylate (SA)-mediated defense is induced against biotrophic pathogens while jasmonate (JA)-mediated defense functions against necrotrophic pathogens. Our goals were to observe the behavior of the necrotrophic pathogen Rhizoctonia solani in the vicinity, on the surface, and within the host tissue after priming the host with SA or JA, and to see if priming with these phytohormones would affect the host defense differently upon infection. It was observed for the first time, that R. solani could not only distinguish between JA versus SA-primed tomato plants from a distance, but surprisingly avoided SA-primed plants more than JA-primed plants. To corroborate these findings, early infection events were monitored and compared through microscopy, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy using transformed R. solani expressing green fluorescence protein gene (gfp). Different histochemical and physiological parameters were compared between the unprimed control, JA-primed, and SA-primed plants after infection. The expression of a total of fifteen genes, including the appressoria-related gene of the pathogen and twelve marker genes functioning in the SA and JA signaling pathways, were monitored over a time course during early infection stages. R. solani being traditionally designated as a necrotroph, the major unexpected observations were that Salicylate priming offered better tolerance than Jasmonate priming and that it was mediated through the activation of SA-mediated defense during the initial phase of infection, followed by JA-mediated defense in the later phase. Hence, the present scenario of biphasic SA-JA defense cascades during R. solani infection, with SA priming imparting maximum tolerance, indicate a possible hemibiotrophic pathosystem that needs to be investigated further.
Collapse
|