1
|
Zieniuk B, Uğur Ş. The Therapeutic Potential of Baicalin and Baicalein in Breast Cancer: A Systematic Review of Mechanisms and Efficacy. Curr Issues Mol Biol 2025; 47:181. [PMID: 40136435 PMCID: PMC11941372 DOI: 10.3390/cimb47030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer remains a leading cause of death globally, with breast cancer being the most commonly diagnosed cancer in women. This systematic review focuses on the therapeutic potential of baicalin and baicalein, two bioactive flavonoids derived from Scutellaria baicalensis, in breast cancer treatment. These compounds exhibit anticancer properties through mechanisms such as apoptosis induction, cell cycle arrest, and inhibition of metastasis. Baicalin and baicalein modulate key signaling pathways, including NF-κB, PI3K/AKT/mTOR, and Wnt/β-catenin, and have shown efficacy in both in vitro and in vivo models. Their synergy with chemotherapy agents and incorporation into nanotechnology-based delivery systems highlight opportunities to enhance therapeutic outcomes. However, current evidence is predominantly preclinical, with limited clinical trials to validate their safety and efficacy in humans. Challenges such as poor bioavailability and rapid metabolism also underscore the need for advanced formulation strategies. This review synthesizes current evidence on the molecular mechanisms, therapeutic efficacy, and potential applications of baicalin and baicalein in breast cancer research.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
2
|
Mohammad Mirzaei N, Kevrekidis PG, Shahriyari L. Oxygen, angiogenesis, cancer and immune interplay in breast tumour microenvironment: a computational investigation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240718. [PMID: 39665095 PMCID: PMC11631512 DOI: 10.1098/rsos.240718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer is a challenging global health problem among women. This study investigates the intricate breast tumour microenvironment (TME) dynamics utilizing data from mammary-specific polyomavirus middle T antigen overexpression mouse models (MMTV-PyMT). It incorporates endothelial cells (ECs), oxygen and vascular endothelial growth factors (VEGF) to examine the interplay of angiogenesis, hypoxia, VEGF and immune cells in cancer progression. We introduce an approach to impute immune cell fractions within the TME using single-cell RNA-sequencing (scRNA-seq) data from MMTV-PyMT mice. We quantify our analysis by estimating cell counts using cell size data and laboratory findings from existing literature. We perform parameter estimation via a Hybrid Genetic Algorithm (HGA). Our simulations reveal various TME behaviours, emphasizing the critical role of adipocytes, angiogenesis, hypoxia and oxygen transport in driving immune responses and cancer progression. Global sensitivity analyses highlight potential therapeutic intervention points, such as VEGFs' role in EC growth and oxygen transportation and severe hypoxia's effect on cancer and the total number of cells. The VEGF-mediated production rate of ECs shows an essential time-dependent impact, highlighting the importance of early intervention in slowing cancer progression. These findings align with clinical observations demonstrating the VEGF inhibitors' efficacy and suggest a timely intervention for better outcomes.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York10032, USA
| | - Panayotis G. Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| |
Collapse
|
3
|
Lv K, Yin C, Li F, Chen W, Zhao L, Liu Z, Hu L. Rapid and comprehensive quality evaluation of Huang-qin from different origins by FT-IR and NIR spectroscopy combined with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1587-1599. [PMID: 38850098 DOI: 10.1002/pca.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Quality evaluation of Huang-qin is significant to ensure its clinical efficacy. OBJECTIVE This study aims to establish an accurate, rapid and comprehensive Huang-qin quality evaluation method to overcome the time-consuming and laborious shortcomings of traditional herbal medicine quality assessment methods. METHODS The contents of baicalin, baicalein and scutellarin in Huang-qin from five different origins were analyzed by FT-IR and NIR spectra combined with multivariate data technology. The quality of Huang-qin from different origins was evaluated by TOPSIS and consistency analysis based on the content of three active ingredients. The correlation between ecological factors and the accumulation of active ingredients was explored. RESULTS Satisfactory prediction results of PLS models were obtained. Relatively, the model based on FT-IR combined with the PLS regression method has higher R2 and smaller RMSE than the NIR combined with the PLS method. TOPSIS and consistency analysis results showed that the quality of Huang-qin from different geographical origins was significantly different. The results showed that the quality of Huang-qin produced in Shanxi Province was the best among the five origins studied. The results also found that the quality of Huang-qin in different growing areas of the same origin was not completely consistent. The correlation study showed that altitude, sunshine duration and rainfall were the main factors that caused the quality difference of medicinal materials in different geographical origins. CONCLUSION This study provides a reference for the rapid quantitative analysis of the active components of herbal medicine and the quality evaluation of them.
Collapse
Affiliation(s)
- Kaidi Lv
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Chunling Yin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Wenbo Chen
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Liuchuang Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhimin Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Leqian Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Zong J, Shen J, Liu X, Liu J, Zhang J, Zhou C, Fan Y, Jin Y. Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways. Biol Trace Elem Res 2023; 201:180-195. [PMID: 35080710 DOI: 10.1007/s12011-022-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 01/11/2023]
Abstract
Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction. Moreover, we analyzed the effect of LiCl on the expression of genes related to milk fat and milk protein synthesis. Herein, LiCl (5-20 mM) significantly increased the expression of β-casein, promoted mRNA expression and phosphorylated protein expression of the signal transduction molecule and activator of transcription 5β (STAT5-β), and inhibited mRNA and protein expression of suppressor of cytokine signaling 2 (SOCS2). In contrast, 5 and 10 mM LiCl significantly inhibited expression of SOCS3. LiCl at concentration of 5-20 mM enhanced phosphorylation level of mTOR protein; at 10 mM and 20 mM, LiCl significantly promoted expression and phosphorylation of downstream ribosomal protein S6 kinase beta-1 (S6K1) protein. Considering milk fat synthesis, mRNA expression of acetyl CoA carboxylase (ACC) and lipoprotein lipase (LPL) genes was considerably increased in the presence of LiCl (5-20 mM). Additionally, increased protein expression levels of stearoyl-CoA desaturase (SCD), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein 1 (SREBP1) were observed at all LiCl concentrations tested. Subsequently, LiCl (5-20 mM) significantly promoted protein expression and phosphorylation of β-catenin, while 10 mM and 20 mM of LiCl significantly promoted protein expression of hypoxia-inducible factor-1α (HIF-1α). Collectively, it has been shown that 10 mM LiCl can effectively activate HIF-1α, β-catenin, and β-catenin downstream signaling pathways. Conversely, at 10 mM, LiCl inhibited SOCS2 and SOCS3 protein expression through JAK2/STAT5, mTOR, and SREBP1 signaling pathways, improving synthesis of milk protein and fat. Therefore, LiCl can be used as a potential nutrient to regulate milk synthesis in dairy cows.
Collapse
Affiliation(s)
- Jinxin Zong
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jinglin Shen
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Xinlu Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiayi Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jing Zhang
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Changhai Zhou
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yating Fan
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongcheng Jin
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
5
|
Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol 2022; 13:986436. [DOI: 10.3389/fphar.2022.986436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Graphical AbstractThis review summarizes the regulatory role of Baicalin on the diverse behaviors of distinct stem cell populations and emphasizes the potential applications of Baicalin and stem cell therapy in climacteric syndrome.
Collapse
|