1
|
Luo X, Peng Y, Fan X, Xie X, Jin Z, Zhang X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15082229. [PMID: 37190158 DOI: 10.3390/cancers15082229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of glucose in tumor cells is converted to lactate despite the presence of sufficient oxygen and functional mitochondria, a phenomenon known as the "Warburg effect" or "aerobic glycolysis". Aerobic glycolysis supplies large amounts of ATP, raw material for macromolecule synthesis, and also lactate, thereby contributing to cancer progression and immunosuppression. Increased aerobic glycolysis has been identified as a key hallmark of cancer. Circular RNAs (circRNAs) are a type of endogenous single-stranded RNAs characterized by covalently circular structures. Accumulating evidence suggests that circRNAs influence the glycolytic phenotype of various cancers. In gastrointestinal (GI) cancers, circRNAs are related to glucose metabolism by regulating specific glycolysis-associated enzymes and transporters as well as some pivotal signaling pathways. Here, we provide a comprehensive review of glucose-metabolism-associated circRNAs in GI cancers. Furthermore, we also discuss the potential clinical prospects of glycolysis-associated circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Liu Y, Jiang C, Liu Q, Huang R, Wang M, Guo X. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03131-7. [PMID: 36944731 DOI: 10.1007/s12094-023-03131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Colorectal cancer is a malignant disease with a high incidence and low survival rate, and the effectiveness of traditional treatments, such as surgery and radiotherapy, is very limited. CircRNAs, a kind of stable endogenous circular RNA, generally function by sponging miRNAs and binding or translating proteins. CircRNAs have been identified to play an important role in regulating the proliferation and metabolism of CRC. In recent years, many reports have indicated that by regulating the expression of glycolysis-related proteins, such as GLUT1 and HK2, or directly translating proteins, circRNAs can promote the Warburg effect in cancer cells, thereby driving CRC metabolism. Moreover, the Warburg effect increases lactate production in cancer cells and promotes acidification of the TME, which further drives cancer progression. In this review, we summarized the remarkable role of circRNAs in regulating glucose metabolism in CRC in recent years, which might be useful for finding new targets for the clinical treatment of CRC.
Collapse
Affiliation(s)
- Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Mancai Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaohu Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Abkenar BR, Mohammadi A, Amoli HA, Soleimani AA, Korani M, Mahmoodi H, Najafi M. Non-coding RNAs are correlated to TGF-β receptor type 2 in patients with colorectal cancer. J Gene Med 2023; 25:e3472. [PMID: 36579810 DOI: 10.1002/jgm.3472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Multiple molecular expression alterations, particularly in non-coding RNAs, play fundamental roles in the regulations of cellular processes and may relate to the occurrence and progression of colorectal cancer (CRC). In the present study, we investigated the associations between TGFBR2, miR20a-5p and long non-coding RNA (lncRNA) LAMTOR5-AS1 in CRC patients. METHODS Colorectal cancer and adjacent normal tissue samples (n = 34) were prepared from CRC patients. The associations between TGFBR2, miR20a-5p and lncRNA LAMTOR5-AS1 were predicted using bioinformatics tools. The expression levels of TGFBR2, miR20a-5p and lncRNA LAMTOR5-AS1 were measured using a quantitative real-time polymerase chain reaction technique. The TGFBR2 protein values were measured by western blotting. The clinical importance of lncRNA LAMTOR5-AS1 was assessed using receiver operating characteristic curve. RESULTS The up-regulated levels of TGFBR2 (p = 0.02), TGFBR2 protein (p = 0.008) and lncRNA LAMTOR5-AS1 (p = 0.02) were significantly observed in CRC tissues compared to the adjacent normal tissues. The miR20a-5p expression level (p = 0.009) was downregulated in CRC tissues. In addition, the miR20a-5p expression level was inversely correlated to the TGFBR2 gene (r2 = 0.88, p < 0.0001), protein (r2 = 0.95, p < 0.0001) and lncRNA LAMTOR5-AS1 gene (r2 = 0.93, p < 0.0001) expression levels. Based on the area under curve, the increase of lncRNA LAMTOR5-AS1 expression level with a sensitivity of 64.52% and specificity of 65.52% was considered in CRC patients. CONCLUSIONS We propose that miR20a-5p is inversely related to long non-coding RNA (lncRNA) LAMTOR5-AS, such that it may be involved in the regulation of TGFBR2 expression level in CRC patients.
Collapse
Affiliation(s)
| | - Asghar Mohammadi
- Shohada Hospital of Tarom, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Ahmadi Amoli
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Korani
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Mahmoodi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
5
|
Sun S, Li C, Cui K, Liu B, Zhou M, Cao Y, Zhang J, Bian Z, Fei B, Huang Z. Hsa_circ_0062682 Promotes Serine Metabolism and Tumor Growth in Colorectal Cancer by Regulating the miR-940/PHGDH Axis. Front Cell Dev Biol 2021; 9:770006. [PMID: 34957102 PMCID: PMC8692793 DOI: 10.3389/fcell.2021.770006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies globally. Increasing evidence indicates that circular RNAs (circRNAs) play a pivotal role in various cancers. The present study focused on exploring the role of a functionally unknown circRNA, hsa_circ_0062682 (circ_0062682), in CRC. By online analyses and experimental validations, we showed that circ_0062682 expression was aberrantly increased in CRC tissues compared with paired normal tissues. Increased expression of circ_0062682 in CRC notably correlated with a poor prognosis and advanced tumor stage. Functional experiments showed that circ_0062682 knockdown reduced CRC growth both in vitro and in vivo. Mechanistically, we revealed that circ_0062682 could sponge miR-940 and identified D-3-phosphoglycerate dehydrogenase (PHGDH), a key oxidoreductase involved in serine biosynthesis, as a novel target of miR-940. Silencing miR-940 expression could mimic the inhibitory effect of circ_0062682 knockdown on CRC proliferation. The expression of PHGDH was downregulated in circ_0062682-depleted or miR-940 overexpressing CRC cells at both the mRNA and protein levels. Circ_0062682 knockdown suppressed CRC growth by decreasing PHGDH expression and serine production via miR-940. Taken together, these data demonstrate, for the first time, that circ_0062682 promotes serine metabolism and tumor growth in CRC by regulating the miR-940/PHGDH axis, suggesting circ_0062682 as a potential novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingyue Zhou
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jia Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|