1
|
Gyöngyösi M, Guthrie J, Hasimbegovic E, Han E, Riesenhuber M, Hamzaraj K, Bergler-Klein J, Traxler D, Emmert MY, Hackl M, Derdak S, Lukovic D. Critical analysis of descriptive microRNA data in the translational research on cardioprotection and cardiac repair: lost in the complexity of bioinformatics. Basic Res Cardiol 2025:10.1007/s00395-025-01104-1. [PMID: 40205177 DOI: 10.1007/s00395-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results. We concluded that, in addition to reducing the number of in vivo experiments, following the 3R animal experiment rules, the bioinformatics approach allows the prediction of several currently unknown interactions between pathways, coding and non-coding genes, proteins, and downstream regulatory elements. However, a comprehensive analysis of the miRNA-mRNA-protein networks needs a profound bioinformatics and mathematical education and training to appropriately design an experimental study, select the right bioinformatics tool with programming language skills and understand and display the bioinformatics output of the results to translate the research data into clinical practice. In addition, using in-silico approaches, a risk of deviating from the in vivo processes exists, with adverse consequences on the translational research.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kevin Hamzaraj
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany
| | | | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Tesic B, Fa Nedeljkovic S, Markovic Filipovic J, Samardzija Nenadov D, Pogrmic-Majkic K, Andric N. Early-life exposure to di(2-ethylhexyl) phthalate impairs reproduction in adult female zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110090. [PMID: 39617312 DOI: 10.1016/j.cbpc.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer used in various industrial and consumer products. It is not covalently bound within these products and leaches out during repeated use, heating, or cleaning. Main routes of environmental DEHP pollution are through the industrial and municipal wastewaters, which pollute aquatic environments. The reproductive system of adult fish is known to be vulnerable to DEHP exposure; however, the effects of early-life exposure to DEHP on reproductive function in adult zebrafish (Danio rerio) females are less studied. To evaluate the impact of early-life exposure to DEHP on freshwater female fish reproduction, zebrafish embryos were exposed to DEHP at 0, 10, 100, and 1000 nmol/L from 5 h post-fertilization (hpf) to 120 hpf (larval stage) and then raised to adulthood in clean water. DEHP decreased the number of released eggs and the fertilization rate after mating with unexposed males. Bodyweight and length, the weight of the ovaries, and the gonadosomatic index were decreased in adult female zebrafish following early-life exposure to DEHP. Histological analysis of the ovaries revealed that DEHP inhibited oogenesis. Serum 17β-estradiol levels were significantly reduced. DEHP inhibited gene expression of all three nuclear estrogen receptors in the ovaries, namely esr1, esr2a, and esr2b, and two gonadotropin receptors, fshr and lhr. These results suggest that transient early-life exposure to environmentally relevant concentrations of DEHP can inhibit the reproduction of adult female zebrafish.
Collapse
Affiliation(s)
- Biljana Tesic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | | | | | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| |
Collapse
|
3
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
4
|
Chen C, Zuo Y, Hu H, Li X, Zhang L, Yang D, Liu F, Liao X, Xiong G, Cao Z, Zhong Z, Bi Y, Lu H, Chen J. Hepatic lipid metabolism disorders and immunotoxicity induced by cysteamine in early developmental stages of zebrafish. Toxicology 2023; 493:153555. [PMID: 37236339 DOI: 10.1016/j.tox.2023.153555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Cysteamine, a sulfhydryl compound, is an intermediate in the metabolism of coenzyme A to taurine in living organisms. However, the potential side effects of cysteamine such as hepatotoxicity in pediatric patients have been reported in some studies. To evaluate the impact of cysteamine on infants and children, larval zebrafish (a vertebrate model) were exposed to 0.18, 0.36 and 0.54mM cysteamine from 72 hpf to 144 hpf. Alterations in general and pathological evaluation, biochemical parameters, cell proliferation, lipid metabolism factors, inflammatory factors and Wnt signaling pathway levels were examined. Increased liver area and lipid accumulation were observed in liver morphology, staining and histopathology in a dose-dependent manner with cysteamine exposure. In addition, the experimental cysteamine group exhibited higher alanine aminotransferase, aspartate aminotransferase, total triglyceride and total cholesterol levels than the control group. Meanwhile, the levels of lipogenesis-related factors ascended whereas lipid transport-related factors descended. Oxidative stress indicators such as reactive oxygen species, MDA and SOD were upregulated after cysteamine exposure. Afterwards, transcription assays revealed that biotinidase and Wnt pathway-related genes were upregulated in the exposed group, and inhibition of Wnt signaling partially rescued the abnormal liver development. The current study found that cysteamine-induced hepatotoxicity in larval zebrafish is due to inflammation and abnormal lipid metabolism, which is mediated by biotinidase (a potential pantetheinase isoenzyme) and Wnt signaling. This provides a perspective on the safety of cysteamine administration in children and identifies potential targets for protection against adverse reactions.
Collapse
Affiliation(s)
- Chao Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuhua Zuo
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hongmei Hu
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xue Li
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China
| | - Li Zhang
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dou Yang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|