1
|
Su R, Chen Y, Zhu R, Ding G, Dong K, Feng M, Huang J. Transcriptomic Analysis Reveals Patterns of Expression of Stage-Specific Genes in Early Apis cerana Embryos. Genes (Basel) 2025; 16:187. [PMID: 40004516 PMCID: PMC11855871 DOI: 10.3390/genes16020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Apis cerana development is described as comprising four stages: embryo, larva, pupa, and adult. There are significant differences between workers and drones in terms of physiological functions and social roles, and the formation of the organ primordia occurs during the embryonic stage. Therefore, the objective of this study is to investigate the differential expression of and alternative splicing of genes in worker and drone embryos and to explain their unique developmental patterns. METHODS Long-read sequencing (PacBio Iso-Seq) and short-read sequencing (Illumina RNA-Seq) were used to investigate worker and drone embryo gene expression differences in A. cerana across five developmental points (12, 24, 36, 48, and 60 h). RESULTS The study identified 59,254 common isoforms, with 5744 and 5106 isoforms specific to worker and drone embryos, respectively. Additionally, a new transcript of the csd gene was identified. The number of differentially expressed genes (3391) and differential splicing events (470 genes) peaked at the 24-h embryonic stage. Differential splicing events of csd, dsx, and Y-y were observed in the worker and drone embryos. CONCLUSIONS The gene expression results indicated that the 24-h embryonic point is a critical period for the expression of genes related to developmental and behavioral differences between workers and drones. The findings provide a theoretical basis for future research on the developmental differences between workers and drones.
Collapse
Affiliation(s)
- Runlang Su
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.S.)
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuhui Chen
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Rui Zhu
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.S.)
| | - Mao Feng
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.S.)
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
2
|
Tourani AH, Katlav A, Cook JM, Riegler M. Mating receptivity mediated by endosymbiont interactions in a haplodiploid thrips species. Proc Biol Sci 2024; 291:20241564. [PMID: 39471850 PMCID: PMC11521595 DOI: 10.1098/rspb.2024.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 11/01/2024] Open
Abstract
Many arthropods carry maternally inherited endosymbionts that cause cytoplasmic incompatibility (CI), manifested as embryonic mortality in matings of infected males with uninfected females. Infected females, however, do not suffer this cost. Therefore, in populations with mixed endosymbiont infections, selection is expected to favour mechanisms that enable hosts to avoid or mitigate CI. This may include changes in mating behaviour, such as reduced female receptivity to mating and/or remating when approached by incompatible males. Here, we investigated mating behavioural traits in haplodiploid thrips naturally associated with two CI-inducing endosymbionts, Cardinium and Wolbachia. Compared with females with both endosymbionts, those with only Cardinium showed reduced receptivity to males carrying both. However, surprisingly, females without endosymbionts were not less receptive to incompatible males. Furthermore, in contrast to females without endosymbionts, females with Cardinium were far less likely to remate with incompatible than compatible males irrespective of the compatibility type of the first mating. Our results suggest that endosymbiont-specific sexual selection processes occur, whereby females carrying only Cardinium recognize Wolbachia in coinfected males to avoid CI. This may hinder a CI-driven Wolbachia spread. Endosymbiont-mediated mating behaviours may be crucial for the dynamics of CI-inducing endosymbionts and their application in pest management strategies.
Collapse
Affiliation(s)
- Amir H. Tourani
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| | - Alihan Katlav
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales2751, Australia
| |
Collapse
|
3
|
Tadano H, Kohno H, Takeuchi H, Kubo T. Unique spatially and temporary-regulated/sex-specific expression of a long ncRNA, Nb-1, suggesting its pleiotropic functions associated with honey bee lifecycle. Sci Rep 2024; 14:8701. [PMID: 38622193 PMCID: PMC11018616 DOI: 10.1038/s41598-024-59494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Honey bees are social insects, and each colony member has unique morphological and physiological traits associated with their social tasks. Previously, we identified a long non-coding RNA from honey bees, termed Nb-1, whose expression in the brain decreases associated with the age-polyethism of workers and is detected in some neurosecretory cells and octopaminergic neurons, suggesting its role in the regulation of worker labor transition. Herein, we investigated its spatially and temporary-regulated/sex-specific expression. Nb-1 was expressed as an abundant maternal RNA during oogenesis and embryogenesis in both sexes. In addition, Nb-1 was expressed preferentially in the proliferating neuroblasts of the mushroom bodies (a higher-order center of the insect brain) in the pupal brains, suggesting its role in embryogenesis and mushroom body development. On the contrary, Nb-1 was expressed in a drone-specific manner in the pupal and adult retina, suggesting its role in the drone visual development and/or sense. Subcellular localization of Nb-1 in the brain during development differed depending on the cell type. Considering that Nb-1 is conserved only in Apidae, our findings suggest that Nb-1 potentially has pleiotropic functions in the expression of multiple developmental, behavioral, and physiological traits, which are closely associated with the honey bee lifecycle.
Collapse
Affiliation(s)
- Hiroto Tadano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|