1
|
Chaudhary R, Weiskirchen R, Ehrlich M, Henis YI. Dual signaling pathways of TGF-β superfamily cytokines in hepatocytes: balancing liver homeostasis and disease progression. Front Pharmacol 2025; 16:1580500. [PMID: 40260391 PMCID: PMC12009898 DOI: 10.3389/fphar.2025.1580500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily (TGF-β-SF) comprises over 30 cytokines, including TGF-β, activins/inhibins, bone morphogenetic proteins (BMPs), and growth differentiation factors (GDFs). These cytokines play critical roles in liver function and disease progression. Here, we discuss Smad-dependent (canonical) and non-Smad pathways activated by these cytokines in a hepatocellular context. We highlight the connection between the deregulation of these pathways or the balance between them and key hepatocellular processes (e.g., proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)). We further discuss their contribution to various chronic liver conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and hepatocellular carcinoma (HCC). In MASLD and MASH, TGF-β signaling contributes to hepatocyte lipid accumulation, cell death and fibrosis progression through both Smad and non-Smad pathways. In HCC, TGF-β and other TGF-β-SF cytokines have a dual role, acting as tumor suppressors or promoters in early vs. advanced stages of tumor progression, respectively. Additionally, we review the involvement of non-Smad pathways in modulating hepatocyte responses to TGF-β-SF cytokines, particularly in the context of chronic liver diseases, as well as the interdependence with other key pathways (cholesterol metabolism, insulin resistance, oxidative stress and lipotoxicity) in MASLD/MASH pathogenesis. The perspectives and insights detailed in this review may assist in determining future research directions and therapeutic targets in liver conditions, including chronic liver diseases and cancer.
Collapse
Affiliation(s)
- Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoav I. Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Chen GY, Fu LL, Ye HP, Cheng P, Feng HC, Yan M. Effects of exosomes from human dental pulp stem cells on the biological behavior of human fibroblasts. Sci Rep 2025; 15:1134. [PMID: 39774130 PMCID: PMC11707004 DOI: 10.1038/s41598-024-78388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of this study was to investigate the effect of dental pulp stem cell-derived exosomes (DPSCs-Exos) on the biological behaviour of fibroblasts, particularly on keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), with a view to providing new insights into cellular regenerative medicine. We obtained DPSCs-Exos by ultracentrifugation and co-cultured it with KFs and NFs. We detected its effect on cell proliferation using the CCK-8 assay; cell migration ability by cell scratch and Transwell assays; extracellular matrix synthesis using the hydroxyproline content assay; the expression levels of genes associated with fibrosis by PCR assay; and the expression levels of proteins related to fibrosis in the cells using the Western Blot method. DPSCs-Exos was able to be taken up by fibroblasts after addition to the culture medium and affected the biological behavior of NFs and KFs. DPSCs-Exos promoted the proliferation of NFs, inhibited the migration and extracellular matrix synthesis of KFs. In addition, DPSCs-Exos was able to inhibit the expression of fibrosis-related genes and proteins in KFs. This study highlights the role of DPSCs-Exos in regulating the biological behaviour of fibroblasts, providing new insights for future applications in the field of cell-free regenerative medicine.
Collapse
Affiliation(s)
- Guan-Yu Chen
- College of Stomatology, Guizhou Medical University, Guiyang, 550000, China
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550000, China
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Marburg, 35039, Germany
| | - Ling-Ling Fu
- Department of Oral Implantology, Guiyang Hospital of Stomatology, Guiyang, 550000, China
- Medical College, Guizhou University, Guiyang, 550025, China
| | - Hui-Ping Ye
- Department of Otolaryngology, Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Ping Cheng
- Department of Clinical Laboratory, Guiyang Hospital of Stomatology, Guiyang, 550000, China
| | - Hong-Chao Feng
- College of Stomatology, Guizhou Medical University, Guiyang, 550000, China.
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550000, China.
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550000, China.
| |
Collapse
|
3
|
Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S, Lotem M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front Immunol 2025; 15:1490035. [PMID: 39845971 PMCID: PMC11752881 DOI: 10.3389/fimmu.2024.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells' reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy.
Collapse
Affiliation(s)
- Shay Tzaban
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Stern
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Zisman
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Eisenberg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shiri Klein
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shoshana Frankenburg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Lotem
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Romo A, Rodríguez TM, Yu G, Dewey RA. Chimeric TβRII-SE/Fc overexpression by a lentiviral vector exerts strong antitumoral activity on colorectal cancer-derived cell lines in vitro and on xenografts. Cancer Gene Ther 2024; 31:174-185. [PMID: 37993543 DOI: 10.1038/s41417-023-00694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
The TGF signaling pathway is a key regulator of cancer progression. In this work, we report for the first time the antitumor activity of TβRII-SE/Fc, a novel peptibody whose targeting domain is comprised of the soluble endogenous isoform of the human TGF-β type II receptor (TβRII-SE). Overexpression of TβRIISE/Fc reduces in vitro cell proliferation and migration while inducing cell cycle arrest and apoptosis in human colorectal cancer-derived cell lines. Moreover, TβRII-SE/Fc overexpression reduces tumorigenicity in BALB/c nude athymic mice. Our results revealed that TRII-SE/Fc-expressing tumors were significantly reduced in size or were even incapable of developing. We also demonstrated that the novel peptibody has the ability to inhibit the canonical TGF-β and BMP signaling pathways while identifying SMAD-dependent and independent proteins involved in tumor progression that are modulated by TβRII-SE/Fc. These findings provide insights into the underlying mechanism responsible for the antitumor activity of TβRII-SE/Fc. Although more studies are required to demonstrate the effectiveness and safety of the novel peptibody as a new therapeutic for the treatment of cancer, our initial in vitro and in vivo results in human colorectal tumor-derived cell lines are highly encouraging. Our results may serve as the foundation for further research and development of a novel biopharmaceutical for oncology.
Collapse
Affiliation(s)
- Ana Romo
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
- RADBIO S.A.S., Sunchales, Argentina
| | - Tania Melina Rodríguez
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
| | - Guo Yu
- Bio X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ricardo Alfredo Dewey
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina.
- RADBIO S.A.S., Sunchales, Argentina.
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red "El Cruce" Nestor Carlos Kirchner, Florencio Varela, Argentina.
| |
Collapse
|
5
|
Ning B, Huang J, Xu H, Lou Y, Wang W, Mu F, Yan X, Li H, Wang N. Genomic organization, intragenic tandem duplication, and expression analysis of chicken TGFBR2 gene. Poult Sci 2022; 101:102169. [PMID: 36201879 PMCID: PMC9535321 DOI: 10.1016/j.psj.2022.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Transforming growth factor beta receptor Ⅱ (TGFBR2), a core member of the transforming growth factor-β (TGF-β) signaling pathway. To date, chicken TGFBR2 (cTGFBR2) genomic structure has not been fully explored. Here, the complete sequences of cTGFBR2 transcript isoforms were determined by 5′ and 3′ rapid amplification of cDNA ends (5′ & 3′ RACE) and reverse transcription polymerase chain reaction (RT-PCR); the tissue expression profiling of cTGFBR2 transcript isoforms was performed using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that cTGFBR2 gene produced 3 transcript isoforms though alternative transcription initiation, splicing, and polyadenylation, which were designated as cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3, respectively. These 3 cTGFBR2 transcript isoforms encoded 3 protein isoforms: cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3. Duplication analysis revealed that, unlike other animal species, cTGFBR2 gene harbored a 5.5-kb intragenic tandem duplication. Tissue expression profiling in the 4-wk-old Arbor Acres (AA) broiler chickens showed that cTGFBR2-1 was ubiquitously expressed, with high expression in abdominal fat, subcutaneous fat, lung, gizzard, and muscle; cTGFBR2-2 was highly expressed in heart, kidney, gizzard, and muscle; cTGFBR2-3 was weakly expressed in all the tested chicken tissues. Tissue expression profiling in the 7-wk-old broiler chickens of the fat and lean lines of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) showed that cTGFBR2-1 was significantly differentially expressed in all the tested tissues except heart, cTGFBR2-2 was significantly differentially expressed in all the tested tissues except subcutaneous fat and liver, and cTGFBR2-3 was significantly differentially expressed in all the tested tissues between the lean and fat lines. Intriguingly, in the fat line, the 3 cTGFBR2 transcript isoforms were expressed to varying degrees in all the 3 tested fat tissues, while in the lean line, only cTGFBR2-1 was expressed in all the 3 tested fat tissues. This is the first report of intragenic tandem duplication within TGFBR2 gene. Our findings pave the way for further studies on the functions and regulation of cTGFBR2 gene.
Collapse
Affiliation(s)
- Bolin Ning
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Huang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haidong Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Lou
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Weishi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fang Mu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|