1
|
Hohlbein J, Diederich B, Marsikova B, Reynaud EG, Holden S, Jahr W, Haase R, Prakash K. Open microscopy in the life sciences: quo vadis? Nat Methods 2022; 19:1020-1025. [PMID: 36008630 DOI: 10.1038/s41592-022-01602-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands. .,Microspectroscopy Research Facility, Wageningen University & Research, Wageningen, The Netherlands.
| | - Benedict Diederich
- Leibniz Institute for Photonic Technology, Jena, Germany.,Institute for Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| | | | - Emmanuel G Reynaud
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Séamus Holden
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Wiebke Jahr
- In-Vision Technologies AG, Guntramsdorf, Austria
| | - Robert Haase
- DFG Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kirti Prakash
- National Physical Laboratory, Teddington, UK.,Integrated Pathology Unit, Centre for Molecular Pathology, The Royal Marsden Trust and Institute of Cancer Research, Sutton, UK
| |
Collapse
|
2
|
Ouyang W, Bowman RW, Wang H, Bumke KE, Collins JT, Spjuth O, Carreras-Puigvert J, Diederich B. An Open-Source Modular Framework for Automated Pipetting and Imaging Applications. Adv Biol (Weinh) 2022; 6:e2101063. [PMID: 34693668 DOI: 10.1002/adbi.202101063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Indexed: 01/27/2023]
Abstract
The number of samples in biological experiments is continuously increasing, but complex protocols and human error in many cases lead to suboptimal data quality and hence difficulties in reproducing scientific findings. Laboratory automation can alleviate many of these problems by precisely reproducing machine-readable protocols. These instruments generally require high up-front investments, and due to the lack of open application programming interfaces (APIs), they are notoriously difficult for scientists to customize and control outside of the vendor-supplied software. Here, automated, high-throughput experiments are demonstrated for interdisciplinary research in life science that can be replicated on a modest budget, using open tools to ensure reproducibility by combining the tools OpenFlexure, Opentrons, ImJoy, and UC2. This automated sample preparation and imaging pipeline can easily be replicated and established in many laboratories as well as in educational contexts through easy-to-understand algorithms and easy-to-build microscopes. Additionally, the creation of feedback loops, with later pipetting or imaging steps depending on the analysis of previously acquired images, enables the realization of fully autonomous "smart" microscopy experiments. All documents and source files are publicly available to prove the concept of smart lab automation using inexpensive, open tools. It is believed this democratizes access to the power and repeatability of automated experiments.
Collapse
Affiliation(s)
- Wei Ouyang
- W. Ouyang, Science for Life Laboratory School of Engineering Sciences in Chemistry, Biotechnology and Health KTH - Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Richard W Bowman
- R. W. Bowman, K. E. Bumke, J. T. Collins, Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Haoran Wang
- H. Wang, B. Diederich, Leibniz Institute for Photonic Technology, Albert-Einstein-Str. 9, 07749, Jena, Germany.,H. Wang, B. Diederich, Institute of Physical Chemistry, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Kaspar E Bumke
- R. W. Bowman, K. E. Bumke, J. T. Collins, Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Joel T Collins
- R. W. Bowman, K. E. Bumke, J. T. Collins, Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Ola Spjuth
- O. Spjuth, J. Carreras-Puigvert, Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, Uppsala, SE-75124, Sweden
| | - Jordi Carreras-Puigvert
- O. Spjuth, J. Carreras-Puigvert, Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, Uppsala, SE-75124, Sweden
| | - Benedict Diederich
- H. Wang, B. Diederich, Leibniz Institute for Photonic Technology, Albert-Einstein-Str. 9, 07749, Jena, Germany.,H. Wang, B. Diederich, Institute of Physical Chemistry, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
3
|
Merces GO, Kennedy C, Lenoci B, Reynaud EG, Burke N, Pickering M. The incubot: A 3D printer-based microscope for long-term live cell imaging within a tissue culture incubator. HARDWAREX 2021; 9:e00189. [PMID: 35492043 PMCID: PMC9041206 DOI: 10.1016/j.ohx.2021.e00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 05/09/2023]
Abstract
Commercial live cell imaging systems represent a large financial burden to research groups, while current open source incubator microscopy systems lack adaptability and are sometimes inadequate for complex imaging experimentation. We present here a low-cost microscope designed for inclusion within a conventional tissue culture incubator. The build is constructed using an entry level 3D printer as the basis for the motion control system, with Raspberry Pi imaging and software integration, allowing for reflected, oblique, and fluorescence imaging of live cell monolayers. The open source nature of the design is aimed to facilitate adaptation by both the community at large and by individual researchers/groups. The development of an adaptable and easy-to-use graphic user interface (GUI) allows for the scientist to be at the core of experimental design through simple modifications of the base GUI code, or generation of an entirely purpose-built script. This adaptability will allow scientists to adapt this equipment for their experimental needs, as opposed to designing experiments to fit their current equipment. The build can be constructed for a cost of roughly €1000 and thus serves as a low-cost and adaptable addition to the open source microscopy community.
Collapse
Affiliation(s)
- George O.T. Merces
- School of Medicine, University College Dublin, Co. Dublin, D04 V1W8, Ireland
- UCD Centre for Biomedical Engineering, University College Dublin, Co. Dublin, D04 V1W8, Ireland
| | - Conor Kennedy
- School of Medicine, University College Dublin, Co. Dublin, D04 V1W8, Ireland
- UCD Centre for Biomedical Engineering, University College Dublin, Co. Dublin, D04 V1W8, Ireland
| | - Blanca Lenoci
- School of Medicine, University College Dublin, Co. Dublin, D04 V1W8, Ireland
- UCD Centre for Biomedical Engineering, University College Dublin, Co. Dublin, D04 V1W8, Ireland
| | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical Science, University College Dublin, Co. Dublin, D04 V1W8, Ireland
| | - Niamh Burke
- School of Medicine, University College Dublin, Co. Dublin, D04 V1W8, Ireland
- UCD Centre for Biomedical Engineering, University College Dublin, Co. Dublin, D04 V1W8, Ireland
| | - Mark Pickering
- School of Medicine, University College Dublin, Co. Dublin, D04 V1W8, Ireland
- UCD Centre for Biomedical Engineering, University College Dublin, Co. Dublin, D04 V1W8, Ireland
| |
Collapse
|