1
|
Zhong L, Shi L, Li W, Zhou L, Wang K, Gu L. An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2025. [PMID: 40396203 DOI: 10.1002/jcu.24058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 03/31/2025] [Indexed: 05/22/2025]
Abstract
RATIONALE AND OBJECTIVES Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III). MATERIALS AND METHODS Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed. RESULTS The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively. CONCLUSION The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).
Collapse
Affiliation(s)
- Lichang Zhong
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Lin Shi
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Weimei Li
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Liang Zhou
- Department of Information, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Kui Wang
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Liping Gu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| |
Collapse
|
2
|
Gerber-Tichet E, Blanchet FP, Majzoub K, Kremer EJ. Toll-like receptor 4 - a multifunctional virus recognition receptor. Trends Microbiol 2025; 33:34-47. [PMID: 39179422 DOI: 10.1016/j.tim.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.
Collapse
Affiliation(s)
- Elina Gerber-Tichet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34090 Montpellier, France
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France.
| |
Collapse
|
3
|
Chen C, Luo Y, Hou Q, Qiu J, Yuan S, Deng K. A vision transformer-based deep transfer learning nomogram for predicting lymph node metastasis in lung adenocarcinoma. Med Phys 2025; 52:375-387. [PMID: 39341208 DOI: 10.1002/mp.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) plays a crucial role in the management of lung cancer; however, the ability of chest computed tomography (CT) imaging to detect LNM status is limited. PURPOSE This study aimed to develop and validate a vision transformer-based deep transfer learning nomogram for predicting LNM in lung adenocarcinoma patients using preoperative unenhanced chest CT imaging. METHODS This study included 528 patients with lung adenocarcinoma who were randomly divided into training and validation cohorts at a 7:3 ratio. The pretrained vision transformer (ViT) was utilized to extract deep transfer learning (DTL) feature, and logistic regression was employed to construct a ViT-based DTL model. Subsequently, the model was compared with six classical convolutional neural network (CNN) models. Finally, the ViT-based DTL signature was combined with independent clinical predictors to construct a ViT-based deep transfer learning nomogram (DTLN). RESULTS The ViT-based DTL model showed good performance, with an area under the curve (AUC) of 0.821 (95% CI, 0.775-0.867) in the training cohort and 0.825 (95% CI, 0.758-0.891) in the validation cohort. The ViT-based DTL model demonstrated comparable performance to classical CNN models in predicting LNM, and the ViT-based DTL signature was then used to construct ViT-based DTLN with independent clinical predictors such as tumor maximum diameter, location, and density. The DTLN achieved the best predictive performance, with AUCs of 0.865 (95% CI, 0.827-0.903) and 0.894 (95% CI, 0845-0942), respectively, surpassing both the clinical factor model and the ViT-based DTL model (p < 0.001). CONCLUSION This study developed a new DTL model based on ViT to predict LNM status in lung adenocarcinoma patients and revealed that the performance of the ViT-based DTL model was comparable to that of classical CNN models, confirming that ViT was viable for deep learning tasks involving medical images. The ViT-based DTLN performed exceptionally well and can assist clinicians and radiologists in making accurate judgments and formulating appropriate treatment plans.
Collapse
Affiliation(s)
- Chuanyu Chen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Luo
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuyang Hou
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Qiu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuya Yuan
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
He YR, Ding N, Han MC, He HY, Xuan LZ, Gu ZY, Zhong M, Ju MJ. Identification of common core genes and pathways in childhood sepsis and cancer by bioinformatics analysis. Discov Oncol 2024; 15:749. [PMID: 39636505 PMCID: PMC11621270 DOI: 10.1007/s12672-024-01651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Sepsis and cancer are both leading causes of death worldwide, and they share several pathophysiological characteristics. Some studies have suggested a possible association between sepsis and cancer; however, few have investigated the core genes involved in both diseases. METHODS Core genes common to both sepsis and cancer were identified using pediatric sepsis datasets (GEO: GSE26378, GSE4607, GSE8121 and GSE13904) and cancer databases (TCGA: BRCA, COADREAD, ESCA, KIRC, LIHC, LUAD, STAD). Gene Ontology (GO) and Reactome enrichment analyses, along with a protein-protein interaction (PPI) network analysis, were performed. Pharmacophore screening was applied to predict the targets of oxymatrine and ulinastatin, and potential target genes shared by both cancer and sepsis were identified. Survival analysis was performed. The association between the target genes and tumor size and number of positive lymph nodes was investigated by Pearson correlation analysis. The association between the target genes and tumor stage was investigated by Fisher's exact test. Molecular docking analysis was performed to evaluate the affinity of the candidate drugs for their targets. RESULTS A total of 641 common genes were identified. GO enrichment analysis showed that common genes were enriched in neutrophil degranulation, inflammatory response and innate immune response. Reactome enrichment analysis showed that common genes were enriched in neutrophil degranulation, interleukin-4 and interleukin-13 signaling, transcriptional regulation of granulopoiesis and interleukin-10 signaling. The PPI network showed that the top 10 core genes were TLR4, IL1B, IL10, ITGAM, TLR2, PTPRC, CDK1, FOS, MMP9 and ITGB2. The survival analysis showed that the high expression of BCAT1, CSAD, G6PD, GM2A, MMP9, PYGL and TOP2A was associated with poorer prognosis in several cancers. Molecular docking showed that oxymatrine and ulinastatin can bind to protein targets with highly stable binding. CONCLUSIONS We identified genes with common effects on both childhood sepsis and cancer, which provides new insights into the association between sepsis and cancer. In addition, two drugs with potential clinical application value were identified. Further studies are required to validate the role of these common core genes in sepsis and cancer and to evaluate the potential utility of these drugs.
Collapse
Affiliation(s)
- Yi-Ran He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ni Ding
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ming-Chen Han
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong-Yu He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li-Zhen Xuan
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhun-Yong Gu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Bai J, Wang Z, Yang M, Xiang J, Liu Z. Disrupting CENP-N mediated SEPT9 methylation as a strategy to inhibit aerobic glycolysis and liver metastasis in colorectal cancer. Clin Exp Metastasis 2024; 41:971-988. [PMID: 39424682 DOI: 10.1007/s10585-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with a high mortality rate, primarily due to liver metastasis. This study explores the role of centromere protein N (CENP-N) in mediating the methylation of septin 9 (SEPT9) and its subsequent effects on aerobic glycolysis and liver metastasis in CRC. We employed in vitro and in vivo experiments, including single-cell RNA sequencing, methylation-specific PCR (MSP), ChIP assays, and various functional assays to assess the impact of CENP-N and SEPT9 on CRC cell proliferation, migration, invasion, and metabolic reprogramming. Our data reveal that CENP-N directly interacts with SEPT9, enhancing its methylation at specific lysine residues. This modification significantly upregulates key glycolytic enzymes, thereby promoting aerobic glycolysis, CRC cell proliferation, and migration. In vivo studies further demonstrate that the CENP-N/SEPT9 axis facilitates liver metastasis of CRC, as confirmed by fluorescence imaging and histological analysis. This study identifies a novel pathway where CENP-N-mediated methylation of SEPT9 drives metabolic reprogramming and metastasis in CRC. These findings suggest potential therapeutic targets for inhibiting CRC progression and liver metastasis, offering new insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Junge Bai
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Zhexue Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Jun Xiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
6
|
Serrano-Rodríguez M, Araya JE, Cortez M, Orrego PR. Cytotoxic Effect of Trypanosoma cruzi Calcineurin B Against Melanoma and Adenocarcinoma Cells In Vitro. Adv Pharmacol Pharm Sci 2024; 2024:5394494. [PMID: 39640496 PMCID: PMC11620811 DOI: 10.1155/adpp/5394494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Chagas disease caused by the obligate intracellular flagellate protozoan Trypanozoma cruzi infects about 6 million people. From the 1930s to the present, the antitumor capacity of T. cruzi has been studied; however, the identification of the responsible molecules for this effect remains undiscovered. Calcineurin, a calcium/calmodulin-dependent serine/threonine phosphatase, is a heterodimer consisting of a catalytic subunit (CaNA) and a regulatory subunit (CaNB). It has been described that T. cruzi CaN is involved in the cell invasion and proliferation of the parasite. Recently, extracellular human CaNB has been demonstrated to be capable of inhibiting tumor growth cells, conferring an antitumor effect; however, the extracellular role of T. cruzi CaNB (TcCaNB) is still unknown. The objective of this work was to investigate the antitumor potential of TcCaNB by interacting with membrane proteins and evaluating its effects on the viability, proliferation, and morphology of tumor cells in vitro. Additionally, the possible mechanism of action of TcCaNB was explored. Murine melanoma (B16-F10), human cervical adenocarcinoma (HeLa), and African green monkey kidney epithelial (Vero) cell lines were employed for in vitro assays. Far Western blot and immunofluorescence were performed to assess the interaction of TcCaNB with membrane proteins, and the effect of TcCaNB on cell viability and proliferation was evaluated using the MTS assay and the CyQUANT NF assay, respectively. The effect of the caspase inhibitor Z-VAD-FMK on TcCaNB-stimulated tumor cells was investigated to determine if TcCaNB-induced cell death was associated with apoptosis. To assess cell cycle progression, TcCaNB-treated cells were analyzed by flow cytometry. In this study, the results showed an interaction of TcCaNB with cell membrane proteins in B16-F10 and HeLa tumor lines, indicating that TcCaNB is capable of decreasing viability and proliferation of B16-F10 and HeLa cells, with no significant effect observed in Vero cells. Furthermore, morphological changes were observed in tumor cells treated with TcCaNB. DNA fragmentations and inhibition of caspases with Z-VAD-FMK partially counteracted the cytotoxic effects of TcCaNB on tumor cells, suggesting that TcCaNB-induced cell death might be associated with apoptosis. Additionally, TcCaNB caused S phase cell cycle arrest in HeLa cells, with an increase in the sub-G1 population indicative of apoptosis, while no significant effects were observed in Vero cells.
Collapse
Affiliation(s)
- Mayela Serrano-Rodríguez
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Jorge E. Araya
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Patricio R. Orrego
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
7
|
Jia Z, Liao P, Yan B, Lei P. Comprehensive pan-cancer analysis of FUTs family as prognostic and immunity markers based on multi-omics data. Discov Oncol 2024; 15:567. [PMID: 39414693 PMCID: PMC11485001 DOI: 10.1007/s12672-024-01447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The dysregulation of fucosyltransferases (FUTs) contributes to alterations in fucosylated epitope expression, which serve as distinctive features of cancer cells. Nonetheless, a comprehensive elucidation of the prognostic biological marker and therapeutic target of the FUTs family in pan-cancer remains elusive. METHODS Over 10,000 individuals' profiling information was examined, including information on 750 small molecule drugs, 33 types of cancer, and 24 types of immune cells. We focused on POFUT2's function and applied GSVA (Gene Set Variation Analysis) to calculate the FUT score. Survival and cancer pathways were found to be correlated with this score. After deriving a signature via univariate Cox and LASSO regression, we generated and analyzed the ROC curve and developed a nomogram. RESULTS Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic changes in FUTs, particularly POFUT2, resulting in aberrant expression. Elevated frequencies of CNV (Copy number variation), SNV (Single Nucleotide Variant), and hypermethylation were observed in FUTs. Additionally, the survival of patients with various types of cancers may be predicted by FUT expression. Immune response and prognosis in numerous types of cancer were found to be strongly linked to aberrant POFUT2 expression. Pathway analysis unveiled the role of FUTs in apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, DNA damage response, RAS/MAPK, TSC/mTOR, PI3K/AKT, AR, ER, and RTK. A prognostic index for patients diagnosed with adrenocortical carcinoma (ACC) was established by applying a risk model incorporating nine FUTs and based on the findings of the GSVA. CONCLUSIONS FUTs, particularly POFUT2, emerge as candidate targets for improving the outcomes of immune therapy. The significance of aberrant MUC12 expression, cancer immune therapy, and patient survival in the context of diverse malignancies is enhanced by the strong correlation observed among these factors. Our five-gene risk signature provides patients with ACC with an independent prognostic indicator, emphasizing the critical function of these genes in inhibiting the immune system's response in ACC.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Liu Z, Chen M, Zheng W, Yuan S, Zhao W. Insights into the prognostic value and immunological role of CD74 in pan-cancer. Discov Oncol 2024; 15:222. [PMID: 38861249 PMCID: PMC11166624 DOI: 10.1007/s12672-024-01081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND CD74 is a non-polymorphic type II transmembrane glycoprotein. It is involved in the regulation of T and B cell development, and dendritic cell (DC) motility. Numerous studies have found that CD74 exerts an essential role in tumor immunity, but the expression profile of CD74 is still not systematically reported, and its value in human pan-cancer analysis is unknown. In this study, we analyzed the expression pattern of CD74 in 33 cancers, and evaluated the significance of CD74 in prognosis prediction and cancer immunity. METHODS Pan-cancer dataset from UCSC Xena.We used the Sangerbox website combined with R software' Timer, CIBERSORT method and IOBR package to analyze and plot the data. Survival was assessed using the Kaplan-Meier method and log-rank test for 33 cancer types (p < 0.05). In addition, to explore the relationship between CD74 expression and immune checkpoints, immune cell infiltration, tumor mutational burden (TMB) and microsatellite instability (MSI), Spearman correlation analysis was performed. RESULTS This study comprehensively analyzed CD74 expression in 33 different tumor types, revealing that CD74 play an crucial role in cancer formation and development. CONCLUSIONS CD74 gene expression in different cancers is associated with immune cell infiltration and immunomodulators and may provide a promising target for survival and immunotherapy. Our study shows that CD74 has an essential role as a biomarker of prognosis during tumor development, which highlights the possibility of new targeted therapies.
Collapse
Affiliation(s)
- Zebiao Liu
- Pathology, Huizhou First Hospital, Huizhou, 516000, China
| | - Mingquan Chen
- Pathology, Huizhou First Hospital, Huizhou, 516000, China
| | - Wanhua Zheng
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shicheng Yuan
- Pathology, Huizhou First Hospital, Huizhou, 516000, China
| | - Wenli Zhao
- Pathology, Huizhou First Hospital, Huizhou, 516000, China.
| |
Collapse
|
9
|
Jia W, Li N, Wang J, Gong X, Ouedraogo SY, Wang Y, Zhao J, Grech G, Chen L, Zhan X. Immune-related gene methylation prognostic instrument for stratification and targeted treatment of ovarian cancer patients toward advanced 3PM approach. EPMA J 2024; 15:375-404. [PMID: 38841623 PMCID: PMC11148001 DOI: 10.1007/s13167-024-00359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/07/2024] [Indexed: 06/07/2024]
Abstract
Background DNA methylation is an important mechanism in epigenetics, which can change the transcription ability of genes and is closely related to the pathogenesis of ovarian cancer (OC). We hypothesize that DNA methylation is significantly different in OCs compared to controls. Specific DNA methylation status can be used as a biomarker of OC, and targeted drugs targeting these methylation patterns and DNA methyltransferase may have better therapeutic effects. Studying the key DNA methylation sites of immune-related genes (IRGs) in OC patients and studying the effects of these methylation sites on the immune microenvironment may provide a new method for further exploring the pathogenesis of OC, realizing early detection and effective monitoring of OC, identifying effective biomarkers of DNA methylation subtypes and drug targets, improving the efficacy of targeted drugs or overcoming drug resistance, and better applying it to predictive diagnosis, prevention, and personalized medicine (PPPM; 3PM) of OC. Method Hypermethylated subtypes (cluster 1) and hypomethylated subtypes (cluster 2) were established in OCs based on the abundance of different methylation sites in IRGs. The differences in immune score, immune checkpoints, immune cells, and overall survival were analyzed between different methylation subtypes in OC samples. The significant pathways, gene ontology (GO), and protein-protein interaction (PPI) network of the identified methylation sites in IRGs were enriched. In addition, the immune-related methylation signature was constructed with multiple regression analysis. A methylation site model based on IRGs was constructed and verified. Results A total of 120 IRGs with 142 differentially methylated sites (DMSs) were identified. The DMSs were clustered into a high-level methylation group (cluster 1) and a low-level methylation group (cluster 2). The significant pathways and GO analysis showed many immune-related and cancer-associated enrichments. A methylation site signature based on IRGs was constructed, including RORC|cg25112191, S100A13|cg14467840, TNF|cg04425624, RLN2|cg03679581, and IL1RL2|cg22797169. The methylation sites of all five genes showed hypomethylation in OC, and there were statistically significant differences among RORC|cg25112191, S100A13|cg14467840, and TNF|cg04425624 (p < 0.05). This prognostic model based on low-level methylation and high-level methylation groups was significantly linked to the immune microenvironment as well as overall survival in OC. Conclusions This study provided different methylation subtypes for OC patients according to the methylation sites of IRGs. In addition, it helps establish a relationship between methylation and the immune microenvironment, which showed specific differences in biological signaling pathways, genomic changes, and immune mechanisms within the two subgroups. These data provide ones to deeply understand the mechanism of immune-related methylation genes on the occurrence and development of OC. The methylation-site signature is also to establish new possibilities for OC therapy. These data are a precious resource for stratification and targeted treatment of OC patients toward an advanced 3PM approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00359-3.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Yan Wang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Junkai Zhao
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
10
|
Qian Q, Luo WL. A network pharmacology method explores the molecular mechanism of Coptis chinensis for the treatment of Alzheimer's disease. Medicine (Baltimore) 2024; 103:e37103. [PMID: 38306514 PMCID: PMC10843322 DOI: 10.1097/md.0000000000037103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
To predict the molecular mechanisms of action of Coptis chinensis in the treatment of Alzheimer's disease using network pharmacology. The active ingredients and targets of Coptis chinensis were obtained from the Traditional Chinese Medicine System Pharmacology Database. Target information for Alzheimer's disease was screened using the GeneCard and OMIM databases. The Venn diagram tool was used to identify the intersecting targets of Coptis chinensis and Alzheimer's disease. The obtained target information was entered into the STRING database to construct a protein-protein interaction network. The R language was used to perform Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of significant targets. Auto Dock Vina software was used for molecular docking. Fourteen effective active ingredients and 158 key targets associated with Coptis chinensis were identified. There were 1113 targets related to Alzheimer's disease genes. A drug-component-disease-target network was constructed and 84 key targets were identified for the treatment of Alzheimer's disease by Coptis chinensis. The main signaling pathways were the PI3K-Akt, AGE-RAGE, MAPK, HIF-1, TNF, and relaxin signaling pathways. The molecular docking results showed that berberine has a high affinity for Alzheimer's Disease. Coptis chinensis could play a multi-target and multi-pathway role against Alzheimer's disease, which has guiding significance for clinical research.
Collapse
Affiliation(s)
- Qian Qian
- Chengdu Shuangnan Hospital, Chengdu, China
| | - Wen Lan Luo
- Chengdu Public Health Clinical Medical Center, Chengdu, China
| |
Collapse
|
11
|
Zhang D, Lyu L, Han S, Xu J, Hu G, Zhao Q, Hu Y. Profiling targets and potential target pairs of CAR-T cell therapy in clinical trials. Int Immunopharmacol 2024; 126:111273. [PMID: 38041957 DOI: 10.1016/j.intimp.2023.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Since the approval of the first chimeric antigen receptor (CAR)-T product in 2017, the number of new CAR-T clinical trials worldwide exceeds 100 per year. 1649 clinical studies have been conducted to explore possible future clinical applications of targets or target pairs through different biotechnologies. In this study, we aim to take a data-driven analytical approach to explore potential dual-target pairs based on clinical trial information. We screened 1283 non-withdrawal interventional CAR-T clinical trials spanning 96 different targets and 74 target pairs from clinicaltrials.gov. Through the Circos plot and temporal network plots, the information between targets and indications was visualized. Based on the assumption that two targets of a target pair must target the same indication, five new target pairs were inferred, including CD19/CD7, CD19/CD5, CD19/CD37, and CD19/BAFFR and validated by expression pattern, literature and patent information. This study provides novel support for target profiling of CAR-T from the perspective of clinical trials and also provides a reference for researchers and developers to select new targets or target pairs of CAR-T cell therapy.
Collapse
Affiliation(s)
- Daiyan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Liyang Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shuo Han
- Zhuhai Hengqin Haomai Technology Co., Ltd, Zhuhai, China
| | - Jiaqi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao SAR, China; DPM, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
12
|
Cui H, Lian J, Xu B, Yu Z, Xiang H, Shi J, Gao Y, Han T. Identification of a bile acid and bile salt metabolism-related lncRNA signature for predicting prognosis and treatment response in hepatocellular carcinoma. Sci Rep 2023; 13:19512. [PMID: 37945918 PMCID: PMC10636107 DOI: 10.1038/s41598-023-46805-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Bile acids and salts have been shown to play a role in liver carcinogenesis through DNA damage, inflammation, and tumor proliferation. However, the correlation between bile acid metabolism and hepatocellular carcinoma (HCC) prognosis remains unclear. This study aimed to identify a predictive signature of bile acid and bile salt metabolism-related long non-coding RNAs (lncRNAs) for HCC prognosis and treatment response. The study used HCC RNA-sequencing data and corresponding clinical and prognostic data from The Cancer Genome Atlas. A prognostic model consisting of five bile acid and bile salt metabolism-related lncRNAs was developed and evaluated in a training set, a validation set and an external set. The model demonstrated good performance in predicting HCC prognosis and was shown to be an independent biomarker for prognosis. Additionally, our study revealed a significant association between the signature and immune cell infiltration, as well as its predictive value for therapeutic responses to both immunotherapy and chemotherapy. Furthermore, three LncRNAs (LUCAT1, AL031985.3 and AC015908.3) expression levels in our signature were validated through qRT-PCR in a cohort of 50 pairs of HCC patient tumor samples and corresponding adjacent non-tumor samples, along with 10 samples of normal liver tissue adjacent to benign lesions. These findings suggest that this novel bile acid and bile salt metabolism-related lncRNA signature can independently predict the prognosis of patients with HCC and may be utilized as a potential predictor of response to treatment in this setting.
Collapse
Affiliation(s)
- Hao Cui
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jia Lian
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Baiguo Xu
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zhenjun Yu
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Huiling Xiang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jingxiang Shi
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affinity the Third Central Hospital, Tianjin, China.
| | - Tao Han
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
13
|
Song M, Li J, Sun J, Yang X, Zhang X, Lv K, Xu Y, Shi J. DNMT1-mediated DNA methylation in toll-like receptor 4 (TLR4) inactivates NF-κB signal pathway-triggered pyroptotic cell death and cellular inflammation to ameliorate lipopolysaccharides (LPS)-induced osteomyelitis. Mol Cell Probes 2023; 71:101922. [PMID: 37459905 DOI: 10.1016/j.mcp.2023.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
Toll-like receptor 4 (TLR4) plays a critical role in various human diseases, and was associated with pyroptotic cell death and inflammatory responses. DNA methylation, which has stable and reversible properties, has been reported to alter the expression of target genes, including TLR4. However, the role of methylated TLR4 in osteomyelitis (OM) and the underlying molecular mechanisms remain unclear. RNA sequencing was used to identify differentially expressed genes and associated signaling pathways. RT-qPCR, Western blot, emzyme-linked immunosorbent assay (ELISA), cell counting kit-8 (CCK-8) and LDH assay kit were used to detect mRNA and protein expression of relevant genes, cell viability and the LDH activity, respectively. TLR4 methylation was detected by methylation-specific PCR (MSP) and verified by Chromatin immunoprecipitation (ChIP). Here, we found that DNA methyltransferase-1 (DNMT1)-mediated TLR4 demethylation significantly suppressed lipopolysaccharides (LPS)-induced pyroptosis and inflammatory response by inhibiting the TLR4/nuclear transcription factor-kappa B (NF-κB) axis. First, we confirmed TLR4 as the study target by mRNA transcriptome sequencing analysis, and TLR4 was observably high-expressed in both OM patients and LPS-treated osteoblastic MC3T3-E1. Then, we found that downregulation of DNMT1 blocked TLR4 promoter methylation modification, resulting in upregulation of TLR4. Simultaneously, functional experiments indicated that suppression of TLR4 or overexpression of DNMT1 promoted cell proliferation and inhibited cell pyroptosis and inflammation in LPS-induced MC3T3-E1, while upregulation of TLR4 restored the effects of DNMT1 silencing on OM progression. In addition, TLR4 elevated phosphorylation of IκB-α and NF-κB p65 in the NF-κB signal pathway, and inhibition of TLR4 or the NF-κB inhibitor PDTC reversed the influence of inhibition of DNMT1. In conclusion, our study demonstrated that DNMT1-mediated TLR4 DNA methylation alleviated LPS-induced OM by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Muguo Song
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Junyi Li
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Jian Sun
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Xiaoyong Yang
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Xijiao Zhang
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Kehan Lv
- Kunming Medical University Graduate School, Kunming, 650500, China; Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
14
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
15
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
16
|
Ning Y, Li Y, Wang H. ANXA2 is a potential biomarker for cancer prognosis and immune infiltration: A systematic pan-cancer analysis. Front Genet 2023; 14:1108167. [PMID: 36713082 PMCID: PMC9877333 DOI: 10.3389/fgene.2023.1108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Background: Annexin A2 (ANXA2) belongs to the Annexin A family and plays a role in epithelial-mesenchymal transition, fibrinolysis, and other physiological processes. Annexin A2 has been extensively implicated in tumorigenesis and development in previous studies, but its precise role in pan-cancer remains largely unknown. Methods: We adopted bioinformatics methods to explore the oncogenic role of Annexin A2 using different databases, including the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) biobank, the Human Protein Atlas (HPA), the Gene Expression Profiling Interaction Analysis (GEPIA) and cBioPortal. We analyzed the differential expression of Annexin A2 in different tumors and its relationship with cancer prognosis, immune cell infiltration, DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI) and mismatch repair (MMR). Furtherly, we conducted a Gene Set Enrichment Analysis (GSEA) to identify the Annexin A2-related pathways. Results: Annexin A2 expression was upregulated in most cancers, except in kidney chromophobe (KICH) and prostate adenocarcinoma (PRAD). Annexin A2 showed a good diagnostic efficacy in twelve types of cancer. The high expression of Annexin A2 was significantly associated with a reduced overall survival, disease-specific survival and progression-free interval in seven cancers. The Annexin A2 expression was variably associated with infiltration of 24 types of immune cells in 32 tumor microenvironments. In addition, Annexin A2 expression was differently associated with 47 immune checkpoints, immunoregulators, DNA methylation, tumor mutation burden, microsatellite instability and mismatch repair in pan-cancer. Gene Set Enrichment Analysis revealed that Annexin A2 was significantly correlated with immune-related pathways in fifteen cancers. Conclusion: Annexin A2 widely correlates with immune infiltration and may function as a promising prognostic biomarker in many tumors, showing its potential as a target for immunotherapy in pan-cancer.
Collapse
Affiliation(s)
- Yijie Ning
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufei Li
- Department of Neurosurgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongqin Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Guo B, Chen JH, Zhang JH, Fang Y, Liu XJ, Zhang J, Zhu HQ, Zhan L. Pattern-recognition receptors in endometriosis: A narrative review. Front Immunol 2023; 14:1161606. [PMID: 37033937 PMCID: PMC10076794 DOI: 10.3389/fimmu.2023.1161606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Endometriosis is closely associated with ectopic focal inflammation and immunosuppressive microenvironment. Multiple types of pattern recognition receptors (PRRs) are present in the innate immune system, which are able to detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in both intracellular and external environments. However, the exact role of PRRs in endometriosis and the underlying molecular mechanism are unclear. PRRs are necessary for the innate immune system to identify and destroy invasive foreign infectious agents. Mammals mainly have two types of microbial recognition systems. The first one consists of the membrane-bound receptors, such as toll-like receptors (TLRs), which recognize extracellular microorganisms and activate intracellular signals to stimulate immune responses. The second one consists of the intracellular PRRs, including nod-like receptors (NLRs) and antiviral proteins retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5) with helix enzyme domain. In this review, we mainly focus on the key role of PRRs in the pathological processes associated with endometriosis. PRRs recognize PAMPs and can distinguish pathogenic microorganisms from self, triggering receptor ligand reaction followed by the stimulation of host immune response. Activated immune response promotes the transmission of microbial infection signals to the cells. As endometriosis is characterized by dysregulated inflammation and immune response, PRRs may potentially be involved in the activation of endometriosis-associated inflammation and immune disorders. Toll-like receptor 2 (TLR2), toll-like receptor 3 (TLR3), toll-like receptor 4 (TLR4), nod-like receptor family caspase activation and recruitment domain (CARD) domain containing 5 (NLRC5), nod-like receptor family pyrin domain containing 3 (NLRP3), and c-type lectin receptors (CLRs) play essential roles in endometriosis development by regulating immune and inflammatory responses. Absent in melanoma 2 (AIM2)-like receptors (ALRs) and retinoic acid-inducible gene I-like receptors (RLRs) may be involved in the activation of endometriosis-associated immune and inflammation disorders. PRRs, especially TLRs, may serve as potential therapeutic targets for alleviating pain in endometriosis patients. PRRs and their ligands interact with the innate immune system to enhance inflammation in the stromal cells during endometriosis. Thus, targeting PRRs and their new synthetic ligands may provide new therapeutic options for treating endometriosis.
Collapse
Affiliation(s)
- Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jia hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun hui Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Fang
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao jing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai qing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhan
- Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lei Zhan,
| |
Collapse
|
18
|
Vaseghi G, Rashidi N, Zare N, Ghasemi F, Pourhadi M, Rafiee L, Javanmard SH. Effects of Methadone on the Toll-like Receptor 4 Expression in Human Non-Small Cell Lung Carcinoma A549 Cell Line Using In-silico and In vitro Techniques. Adv Biomed Res 2022; 11:122. [PMID: 36798925 PMCID: PMC9926039 DOI: 10.4103/abr.abr_97_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/06/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background In this study, the effects of methadone and naloxone on the expression of toll-like receptor 4 (TLR4) gene have been evaluated in human non-small cell lung carcinoma A549 cell line migration using in-silico and in vitro techniques. Materials and Methods Lung cancer A549 cell cultures were stimulated for 24 h with methadone (5, 10, and 20 μM) and naloxone (20 and 40 μM) concentrations. The level of TLR4 expression was determined by the quantitative real-time polymerase chain reaction. Migration of the A549 cells was investigated after a 4-h incubation period with methadone using the Boyden Chamber assay. Results Migration rate of the A549 cells treated with 5 (P < 0.05) and 20 (P < 0.01) μM methadone was, respectively, increased and decreased with 20 μM naloxone (P < 0.05). Furthermore, the TLR4 expression was enhanced with 5 (P < 0.05) and 20 (P < 0.01) μM methadone and decreased with 20 (P < 0.05) and 40 μM naloxone (P < 0.01). In addition, in silico docking analysis revealed docking of methadone to MD-2 and TLR4. Conclusion According to the present DATA, methadone affects the TLR4 expression. It may however cause adverse consequences by increasing the TLR4 expression. Therefore, the useful analgesic properties of methadone should be separated from the unwanted TLR4-mediated side effects.
Collapse
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Rashidi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Pourhadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Shaghayegh Haghjooy Javanmard, Department of Physiology, Applied Physiology Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, Iran. E-mail:
| |
Collapse
|
19
|
Tang S, Zhao Z, Wang Y, El Akkawi MM, Tan Z, Liu D, Chen G, Liu H. DHRS7 is an immune-related prognostic biomarker of KIRC and pan-cancer. Front Genet 2022; 13:1015844. [PMID: 36276963 PMCID: PMC9584615 DOI: 10.3389/fgene.2022.1015844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Renal clear cell carcinoma (KIRC) is one malignancy whose development and prognosis have been associated with aberrant DHRS7 expression. However, the catalytic activity and pathophysiology of KIRC are poorly understood, and no sensitive tumor biomarkers have yet been discovered. In our study, we examined the significant influence of DHRS7 on the tumor microenvironment (TME) and tumor progression using an overall predictable and prognostic evaluation approach. We found novel cancer staging, particularly in KIRC, as well as potential therapeutic drugs out of 27 drug sensitivity tests. Using Perl scripts, it was possible to determine the number of somatic mutations present in 33 tumors, as well as the relative scores of 22 immune cells using CIBERSORT, the relationship between immune infiltration and differential expression using TCGA data, and the immune microenvironment score using the estimate technique. Our results show that DHRS7 is abnormally expressed in pan-cancer patients, which influences their survival. Low DHRS7 expression was associated with late clinical stages and a low survival rate in KIRC patients, suggesting a poor prognosis and course of treatment, in HNSG, MESO, and KIRC patients. We also found that DHRS7 was associated with TMB and MSI in certain tumors. Using KIRC as an example, we discovered a negative correlation between DHRS7 expression and immunological assessments, suggesting that this substance might be used as a tumor biomarker.
Collapse
Affiliation(s)
- Sheng Tang
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Zhenyu Zhao
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuhang Wang
- Department of Urology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Mariya M. El Akkawi
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhennan Tan
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Dongbin Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Guoxiong Chen
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Hu Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
- *Correspondence: Hu Liu,
| |
Collapse
|
20
|
Zeng Q, Li H, Zhu Y, Feng Z, Shu X, Wu A, Luo L, Cao Y, Tu Y, Xiong J, Zhou F, Li Z. Development and validation of a predictive model combining clinical, radiomics, and deep transfer learning features for lymph node metastasis in early gastric cancer. Front Med (Lausanne) 2022; 9:986437. [PMID: 36262277 PMCID: PMC9573999 DOI: 10.3389/fmed.2022.986437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 01/19/2023] Open
Abstract
Background This study aims to develop and validate a predictive model combining deep transfer learning, radiomics, and clinical features for lymph node metastasis (LNM) in early gastric cancer (EGC). Materials and methods This study retrospectively collected 555 patients with EGC, and randomly divided them into two cohorts with a ratio of 7:3 (training cohort, n = 388; internal validation cohort, n = 167). A total of 79 patients with EGC collected from the Second Affiliated Hospital of Soochow University were used as external validation cohort. Pre-trained deep learning networks were used to extract deep transfer learning (DTL) features, and radiomics features were extracted based on hand-crafted features. We employed the Spearman rank correlation test and least absolute shrinkage and selection operator regression for feature selection from the combined features of clinical, radiomics, and DTL features, and then, machine learning classification models including support vector machine, K-nearest neighbor, random decision forests (RF), and XGBoost were trained, and their performance by determining the area under the curve (AUC) were compared. Results We constructed eight pre-trained transfer learning networks and extracted DTL features, respectively. The results showed that 1,048 DTL features extracted based on the pre-trained Resnet152 network combined in the predictive model had the best performance in discriminating the LNM status of EGC, with an AUC of 0.901 (95% CI: 0.847-0.956) and 0.915 (95% CI: 0.850-0.981) in the internal validation and external validation cohorts, respectively. Conclusion We first utilized comprehensive multidimensional data based on deep transfer learning, radiomics, and clinical features with a good predictive ability for discriminating the LNM status in EGC, which could provide favorable information when choosing therapy options for individuals with EGC.
Collapse
Affiliation(s)
- Qingwen Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xufeng Shu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Ahao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Lianghua Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Polymorphisms in toll-like receptor 3 and 4 genes as prognostic and outcome biomarkers in melanoma patients. Melanoma Res 2022; 32:309-317. [PMID: 35855659 DOI: 10.1097/cmr.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is one of the most aggressive tumors, and in the setting of rising incidence and mortality, there is an urgent need to identify new prognostic markers. Toll-like receptors (TLRs), are aberrantly expressed in numerous cancers, including melanoma. TLR signaling provides a microenvironment that is involved in antitumor immune response, chronic inflammation, cancer cell proliferation and evasion of immune destruction. In the present study, we investigated whether single nucleotide polymorphisms (SNPs) in TLR3 and TLR4 genes are associated with clinicopathologic features, progression and survival of melanoma patients. The study was conducted on 120 melanoma patients. DNA extracted from peripheral blood was genotyped for TLR3 polymorphisms rs5743312 and rs3775291 (L412F) and TLR4 polymorphisms rs4986790 (D299G) and rs4986791 (T399I), by TaqMan Real-Time PCR Assays. Kaplan-Meier survival curves were compared by the log-rank test. TLR3 polymorphism L412F was associated with a higher mitotic index (P = 0.035). TLR4 D299G and T399I polymorphisms were associated with indicators of melanoma severity, nodal metastases (P = 0.005 and P = 0.007, respectively) and advanced stage III (P = 0.005 and P = 0.004, respectively). Cox regression analysis showed that the presence of tumor-infiltrating lymphocytes (TILs) predicted better overall survival (HR = 0.318; P = 0.004). TLR4 T399I polymorphism was significantly associated with worse survival, P = 0.025. The overall survival rates were significantly lower for patients carrying variant allele T of TLR4 T399I SNP (TC and TT genotypes combined) (P = 0.008, log-rank test), compared to wild-type genotype CC. Our findings indicate that TLR4 polymorphisms T399I (rs4986791) and D299G (rs4986790) could be potential prognostic and survival markers for melanoma patients.
Collapse
|
22
|
Gao W, Zhang ZW, Wang HY, Li XD, Peng WT, Guan HY, Liao YX, Liu A. TMED2/9/10 Serve as Biomarkers for Poor Prognosis in Head and Neck Squamous Carcinoma. Front Genet 2022; 13:895281. [PMID: 35754792 PMCID: PMC9214264 DOI: 10.3389/fgene.2022.895281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Head and neck squamous carcinoma (HNSC) is one of the most common malignant tumors with high incidence and poor prognosis. Transmembrane emp24 structural domain (TMED) proteins are involved in protein transport and vesicle budding processes, which have implicated various malignancies’ progression. However, the roles of TMEDs in HNSC, especially in terms of development and prognosis, have not been fully elucidated. Methods: We applied TIMER 2.0, UALCAN, GEPIA 2, Kaplan-Meier plotter, GEO, The Human Protein Atlas (HPA), cBioPortal, Linkedomics, Metascape, GRNdb, STRING, and Cytoscape to investigate the roles of TMED family members in HNSC. Results: Compared with normal tissues, the mRNA expression levels of TMED1/2/4/5/7/8/9/10 were significantly increased in the TCGA HNSC dataset. And we combined GEPIA 2 and Kaplan-Meier Plotter to select TMED2/9/10 with prognostic value. Then we detected the levels of mRNA in the GEO HNSC database and the protein expression in HPA. It was found that the mRNA and protein expression levels of TMED2/9/10 were increased in HNSC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that TMED2/9/10 and their co-expressed genes promoted the malignant behavior of tumors by participating in biological processes such as intracellular transferase complex, protein transport, focal adhesion, intracellular protein processing. Single-cell analysis and immune infiltration analysis suggested that immune responses of cancer-associated fibroblasts and endothelial cells might be associated with prognosis. Finally, the transcription factors-genes network and protein-protein functional interaction network pointed to genes such as X-box binding protein 1 (XBP1) and TMED7, which might cooperate with TMED2/9/10 to change the progression of HNSC. Conclusions: Our study implied that TMED2/9/10 and related genes mightjointly affect the prognosis of HNSC, providing specific clues for further experimental research, personalized diagnosis strategies, and targeted clinical therapy for HNSC.
Collapse
Affiliation(s)
- Wen Gao
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhe-Wen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hong-Yi Wang
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Di Li
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Ting Peng
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao-Yu Guan
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu-Xuan Liao
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - An Liu
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Li Z, Qi X, Zhang X, Yu L, Gao L, Kong W, Chen W, Dong W, Luo L, Lu D, Zhang L, Ma Y. TRDMT1 exhibited protective effects against LPS-induced inflammation in rats through TLR4-NF-κB/MAPK-TNF-α pathway. Animal Model Exp Med 2022; 5:172-182. [PMID: 35474613 PMCID: PMC9043724 DOI: 10.1002/ame2.12221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background Inflammation is a complex physiological and pathological process. Although many types of inflammation are well characterized, their physiological functions are largely unknown. tRNA aspartic acid methyltransferase 1 (TRDMT1) has been implicated as a stress‐related protein, but its intrinsic biological role is unclear. Methods We constructed a Trdmt1 knockout rat and adopted the LPS‐induced sepsis model. Survival curve, histopathological examination, expression of inflammatory factors, and protein level of TLR4 pathway were analyzed. Results Trdmt1 deletion had no obvious impact on development and growth. Trdmt1 deletion slightly increased the mortality during aging. Our data showed that Trdmt1 strongly responded in LPS‐treated rats, and Trdmt1 knockout rats were vulnerable to LPS treatment with declined survival rate. We also observed more aggravated tissue damage and more cumulative functional cell degeneration in LPS‐treated knockout rats compared with control rats. Further studies showed upregulated TNF‐α level in liver, spleen, lung, and serum tissues, which may be explained by enhanced p65 and p38 phosphorylation. Conclusions Our data demonstrated that Trdmt1 plays a protective role in inflammation by regulating the TLR4‐NF‐κB/MAPK‐TNF‐α pathway. This work provides useful information to understand the TRDMT1 function in inflammation.
Collapse
Affiliation(s)
- Zhengguang Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Yu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weining Kong
- National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijun Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Xu Y, Chen Y, Niu Z, Xing J, Yang Z, Yin X, Guo L, Zhang Q, Qiu H, Han Y. A Novel Pyroptotic and Inflammatory Gene Signature Predicts the Prognosis of Cutaneous Melanoma and the Effect of Anticancer Therapies. Front Med (Lausanne) 2022; 9:841568. [PMID: 35492358 PMCID: PMC9053829 DOI: 10.3389/fmed.2022.841568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe purpose of this study was to construct a gene signature comprising genes related to both inflammation and pyroptosis (GRIPs) to predict the prognosis of patients with cutaneous melanoma patients and the efficacy of immunotherapy, chemotherapy, and targeted therapy in these patients.MethodsGene expression profiles were collected from The Cancer Genome Atlas. Weighted gene co-expression network analysis was performed to identify GRIPs. Univariable Cox regression and Lasso regression further selected key prognostic genes. Multivariable Cox regression was used to construct a risk score, which stratified patients into high- and low-risk groups. Areas under the ROC curves (AUCs) were calculated, and Kaplan-Meier analyses were performed for the two groups, following validation in an external cohort from Gene Expression Omnibus (GEO). A nomogram including the GRIP signature and clinicopathological characteristics was developed for clinical use. Gene set enrichment analysis illustrated differentially enriched pathways. Differences in the tumor microenvironment (TME) between the two groups were assessed. The efficacies of immune checkpoint inhibitors (ICIs), chemotherapeutic agents, and targeted agents were predicted for both groups. Immunohistochemical analyses of the GRIPs between the normal and CM tissues were performed using the Human Protein Atlas data. The qRT-PCR experiments validated the expression of genes in CM cell lines, Hacat, and PIG1 cell lines.ResultsA total of 185 GRIPs were identified. A novel gene signature comprising eight GRIPs (TLR1, CCL8, EMP3, IFNGR2, CCL25, IL15, RTP4, and NLRP6) was constructed. The signature had AUCs of 0.714 and 0.659 for predicting 3-year overall survival (OS) in the TCGA entire and GEO validation cohorts, respectively. Kaplan-Meier analyses revealed that the high-risk group had a poorer prognosis. Multivariable Cox regression showed that the GRIP signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The nomogram showed good accuracy and reliability in predicting 3-year OS (AUC = 0.810). GSEA and TME analyses showed that the high-risk group had lower levels of pyroptosis, inflammation, and immune response, such as lower levels of CD8+ T-cell infiltration, CD4+ memory-activated T-cell infiltration, and ICI. In addition, low-risk patients whose disease expressed PD-1 or CTLA-4 were likely to respond better to ICIs, and several chemotherapeutic and targeted agents. Immunohistochemical analysis confirmed the distinct expression of five out of the eight GRIPs between normal and CM tissues.ConclusionOur novel 8-GRIP signature can accurately predict the prognosis of patients with CM and the efficacies of multiple anticancer therapies. These GRIPs might be potential prognostic biomarkers and therapeutic targets for CM.
Collapse
Affiliation(s)
- Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zehao Niu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Haixia Qiu
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Yan Han
| |
Collapse
|
25
|
Zeng Y, Gao M, Lin D, Du G, Cai Y. Prognostic and Immunological Roles of MMP-9 in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2592962. [PMID: 35178444 PMCID: PMC8844435 DOI: 10.1155/2022/2592962] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Matrix metalloproteinase-9 (MMP-9) can degrade the extracellular matrix and participate in tumor progression. The relationship between MMP-9 and immune cells has been reported in various malignant tumors. However, there is a lack of comprehensive pan-cancer studies on the relationship between MMP-9 and cancer prognosis and immune infiltration. METHOD We used data from TCGA and GTEx databases to comprehensively analyze the differential expression of MMP-9 in normal and cancerous tissues. Survival analysis was performed to understand the prognostic role of MMP-9 in different tumors. We then analyzed the expression of MMP-9 across different tumors and at different clinical stages. Based on the results, we assessed the correlation between MMP-9 expression and immune-associated genes and immunocytes. Finally, we calculated the tumor mutation burden (TMB) of 33 cancer types and analyzed the correlation between MMP-9 and TMB, DNA microsatellite instability, and DNA repair genes. RESULTS MMP-9 significantly affected the prognosis and metastasis of various cancers. It was associated based on overall survival, disease-specific survival in five tumors, progression-free interval in seven tumors, and clinical stage in eight tumors, as well as with prognosis and metastasis in adrenocortical carcinoma and kidney renal clear cell carcinoma. It was also coexpressed with immune-related genes and DNA repair genes. The expression of MMP-9 was positively correlated with the markers of T cells, tumor-associated macrophages, Th1 cells, and T cell exhaustion. Furthermore, MMP-9 expression was highly correlated with macrophage M0 in 28 tumors. In addition, its expression was associated with TMB in eight cancer types and DNA microsatellite instability in six cancer types. CONCLUSION MMP-9 is related to immune infiltration in pan-cancer and can be used as a biomarker related to cancer prognosis and metastasis. Our findings provide prognostic molecular markers and new ideas for immunotherapy.
Collapse
Affiliation(s)
- Yudan Zeng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqian Gao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongtao Lin
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoxia Du
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Cai
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| |
Collapse
|