1
|
Kouchi Z, Kojima M. A Structural Network Analysis of Neuronal ArhGAP21/23 Interactors by Computational Modeling. ACS OMEGA 2023; 8:19249-19264. [PMID: 37305272 PMCID: PMC10249030 DOI: 10.1021/acsomega.2c08054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
RhoGTPase-activating proteins (RhoGAPs) play multiple roles in neuronal development; however, details of their substrate recognition system remain elusive. ArhGAP21 and ArhGAP23 are RhoGAPs that contain N-terminal PDZ and pleckstrin homology domains. In the present study, the RhoGAP domain of these ArhGAPs was computationally modeled by template-based methods and the AlphaFold2 software program, and their intrinsic RhoGTPase recognition mechanism was analyzed from the domain structures using the protein docking programs HADDOCK and HDOCK. ArhGAP21 was predicted to preferentially catalyze Cdc42, RhoA, RhoB, RhoC, and RhoG and to downregulate RhoD and Tc10 activities. Regarding ArhGAP23, RhoA and Cdc42 were deduced to be its substrates, whereas RhoD downregulation was predicted to be less efficient. The PDZ domains of ArhGAP21/23 possess the FTLRXXXVY sequence, and similar globular folding consists of antiparalleled β-sheets and two α-helices that are conserved with PDZ domains of MAST-family proteins. A peptide docking analysis revealed the specific interaction of the ArhGAP23 PDZ domain with the PTEN C-terminus. The pleckstrin homology domain structure of ArhGAP23 was also predicted, and the functional selectivity for the interactors regulated by the folding and disordered domains in ArhGAP21 and ArhGAP23 was examined by an in silico analysis. An interaction analysis of these RhoGAPs revealed the existence of mammalian ArhGAP21/23-specific type I and type III Arf- and RhoGTPase-regulated signaling. Multiple recognition systems of RhoGTPase substrates and selective Arf-dependent localization of ArhGAP21/23 may form the basis of the functional core signaling necessary for synaptic homeostasis and axon/dendritic transport regulated by RhoGAP localization and activities.
Collapse
Affiliation(s)
- Zen Kouchi
- Department
of Genetics, Institute for Developmental
Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai-city 480-0392 Aichi, Japan
| | - Masaki Kojima
- Laboratory
of Bioinformatics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan
| |
Collapse
|
2
|
Li Y, Hao W, Guan J, Li B, Meng L, Sun S, Sheng T, Dong S, Zhou Q, Liu M, Zhang Z, Shen T, Shen Y, Zhao B. Relationship between indices of circulating blood cells and bone homeostasis in osteoporosis. Front Endocrinol (Lausanne) 2022; 13:965290. [PMID: 36133307 PMCID: PMC9483170 DOI: 10.3389/fendo.2022.965290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bone development have been shown to play an important role in regulating hematopoiesis as one major component of bone marrow microenvironment. Recent studies support the notion that there is an intricate relationship between hematopoiesis and bone homeostasis, however, little is known about the alterations in the hematopoietic lineages in pathologic conditions. Using various osteoporotic mouse models, we show here that bone microarchitecture abnormalities alter parameters of peripheral blood cells. The level of white blood cells is dynamics and negatively correlated with bone mineral density during the progression of osteoporosis. Furthermore, our clinical data confirm that osteoporosis is associated with abnormal circulating blood cell counts. These results demonstrated a causal link that osteoporosis is accompanied by the altered circulating blood cells, supporting the idea of a close interplay between hematopoiesis and bone homeostasis. Our study would propose that routine complete blood count might be applied as a potential diagnostic and putative marker for osteoporosis.
Collapse
Affiliation(s)
- Yuan Li
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Baobing Zhao, ; Yuan Li,
| | - Weimin Hao
- Department of Spine Surgery, Heze Municipal Hospital, Heze, Shandong, China
| | - Jianming Guan
- Department of Hematology, Heze Municipal Hospital, Heze, Shandong, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Meng
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangjiao Sun
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianyuan Sheng
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangxi Dong
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhou
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingjie Liu
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Baobing Zhao, ; Yuan Li,
| |
Collapse
|