1
|
Ahern DT, Bansal P, Faustino IV, Chambers OM, Banda EC, Glatt-Deeley HR, Massey RE, Kondaveeti Y, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. Am J Hum Genet 2025; 112:615-629. [PMID: 39922196 PMCID: PMC11947172 DOI: 10.1016/j.ajhg.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Viable human aneuploidy can be challenging to model in rodents due to syntenic boundaries or primate-specific biology. Human monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in X-monosomic mice. To learn how monosomy-X may impact embryonic development, we turned to 45,X and isogenic euploid human induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because the neural crest (NC) is hypothesized to give rise to craniofacial and cardiovascular changes in TS, we assessed differential expression of hiPSC-derived anterior NC cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers and disrupted expression of other NCC-specific genes relative to isogenic euploid controls. Additionally, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts with 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal and nuclear-encoded mitochondrial proteins. Such metabolic pathways are also over-represented in weighted co-expression modules that are preserved in monogenic neurocristopathy and reflect 28% of all TS-associated terms of the human phenotype ontology. We demonstrate that 45,X NCCs reduce protein synthesis despite activation of mammalian target of rapamycin (mTOR) but are partially rescued by mild mTOR suppression. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as powerful models of early NC development in TS and inform new hypotheses toward its etiology.
Collapse
Affiliation(s)
- Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Isaac V Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Owen M Chambers
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
2
|
Ahern DT, Bansal P, Faustino IV, Glatt-Deeley HR, Massey R, Kondaveeti Y, Banda EC, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.08.531747. [PMID: 36945647 PMCID: PMC10028916 DOI: 10.1101/2023.03.08.531747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Modeling the developmental etiology of viable human aneuploidy can be challenging in rodents due to syntenic boundaries, or primate-specific biology. In humans, monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in 39,X-mice. To learn how human monosomy-X may impact early embryonic development, we turned to human 45,X and isogenic euploid induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because neural crest (NC) derived cell types are hypothesized to underpin craniofacial and cardiovascular changes in TS, we performed a highly-powered differential expression study on hiPSC-derived anterior neural crest cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers, and disrupted expression of other NCC-specific genes, relative to their isogenic euploid controls. In particular, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts that feature 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal protein and nuclear-encoded mitochondrial genes. Such metabolic pathways are also over-represented in weighted co-expression gene modules that are preserved in monogenic neurocristopathy. Importantly, these gene modules are also significantly enriched in 28% of all TS-associated terms of the human phenotype ontology. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as a powerful model of early NC development in TS and inform new hypotheses towards its etiology.
Collapse
Affiliation(s)
- Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Isaac V. Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Rachael Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
3
|
Wen J, Song J, Chen J, Feng Z, Jing Q, Gong W, Kang X, Mei L, He C, Ma L, Feng Y. Modeling of pigmentation disorders associated with MITF mutation in Waardenburg syndrome revealed an impaired melanogenesis pathway in iPS-derived melanocytes. Pigment Cell Melanoma Res 2024; 37:21-35. [PMID: 37559350 DOI: 10.1111/pcmr.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/18/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Waardenburg Syndrome (WS) is a rare genetic disorder that leads to congenital hearing loss and pigmentation defects. Microphthalmia-associated transcription factor (MITF) is one of its significant pathogenic genes. Despite the comprehensive investigation in animal models, the pathogenic mechanism is still poorly described in humans due to difficulties accessing embryonic tissues. In this work, we used induced pluripotent stem cells derived from a WS patient carrying a heterozygous mutation in the MITF gene c.626A>T (p.His209Leu), and differentiated toward melanocyte lineage, which is the most affected cell type involved in WS. Compared with the wild-type cell line, the MITFmut cell line showed a reduced expression of the characteristic melanocyte-related genes and a lesser proportion of mature, fully pigmented melanosomes. The transcriptome analysis also revealed widespread gene expression changes at the melanocyte stage in the MITFmut cell line. The differentially expressed genes were enriched in melanogenesis and cell proliferation-related pathways. Interestingly, ion transport-related genes also showed a significant difference in MITFmut -induced melanocytes, indicating that the MITF mutant may lead to the dysfunction of potassium channels and transporters produced by intermediate cells in the cochlea, further causing the associated phenotype of deafness. Altogether, our study provides valuable insights into how MITF mutation affects WS patients, which might result in defective melanocyte development and the related phenotype based on the patient-derived iPSC model.
Collapse
Affiliation(s)
- Jie Wen
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
| | - Jiale Chen
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhili Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Qiancheng Jing
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Wei Gong
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Xiaoming Kang
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
| | - Lu Ma
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
- Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Baxi AB, Nemes P, Moody SA. Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates. iScience 2023; 26:107665. [PMID: 37670778 PMCID: PMC10475516 DOI: 10.1016/j.isci.2023.107665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
Over 200 genes are known to underlie human congenital hearing loss (CHL). Although transcriptomic approaches have identified candidate regulators of otic development, little is known about the abundance of their protein products. We used a multiplexed quantitative mass spectrometry-based proteomic approach to determine protein abundances over key stages of Xenopus otic morphogenesis to reveal a dynamic expression of cytoskeletal, integrin signaling, and extracellular matrix proteins. We correlated these dynamically expressed proteins to previously published lists of putative downstream targets of human syndromic hearing loss genes: SIX1 (BOR syndrome), CHD7 (CHARGE syndrome), and SOX10 (Waardenburg syndrome). We identified transforming growth factor beta-induced (Tgfbi), an extracellular integrin-interacting protein, as a putative target of Six1 that is required for normal otic vesicle formation. Our findings demonstrate the application of this Xenopus dataset to understanding the dynamic regulation of proteins during otic development and to discovery of additional candidates for human CHL.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
5
|
Liu W, Lin L, Yang Q, Jin S, Jiang H. Changes in the Transcriptome-Associated Co-Expression Profile of Embryonic External Ear Development After the BMP5 Gene Mutation. J Craniofac Surg 2023; 34:797-803. [PMID: 36192835 DOI: 10.1097/scs.0000000000009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to perform an association analysis of the full transcriptome in Bmp5 short-ear mice during the development of the external ear in mouse embryos using advanced sequencing techniques. To understand the changes in gene regulation and expression of BMP5 gene mutations involved in the external ear embryonic development of mice, external ear tissues of mouse embryos developed to E15.5 and E17.5 were obtained using a BMP5 short-ear mouse model. The association analysis of the full transcriptome mainly involved the analysis of lncRNA and mRNA associations, the analysis of lncRNA and miRNA associations, the analysis of miRNA and mRNA associations, the analysis of circRNA and mRNA associations and circRNA, miRNA, and mRNA associations. The results showed that regulation of the full transcriptome is associated with external ear development in BMP5 short-ear mouse embryos, and some key regulatory changes in full transcriptome after BMP5 gene point mutation are different. This study will provide a new clue to investigate the mechanism underlying the regulation of mouse external ear development by the full transcriptome.
Collapse
Affiliation(s)
- Wei Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
6
|
Li S, Qin M, Mao S, Mei L, Cai X, Feng Y, He C, Song J. A comprehensive genotype-phenotype evaluation of eight Chinese probands with Waardenburg syndrome. BMC Med Genomics 2022; 15:230. [PMID: 36329483 PMCID: PMC9632049 DOI: 10.1186/s12920-022-01379-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Waardenburg syndrome (WS) is the most common form of syndromic deafness with phenotypic and genetic heterogeneity in the Chinese population. This study aimed to clarify the clinical characteristics and the genetic cause in eight Chinese WS families (including three familial and five sporadic cases). Further genotype–phenotype relationships were also investigated. Methods All probands underwent screening for the known WS-related genes including PAX3, SOX10, MITF, EDNRB, EDN3, and SNAI2 using next-generation sequencing to identify disease-causing genes. Further validation using Sanger sequencing was performed. Relevant findings for the associated genotype–phenotype from previous literature were retrospectively analyzed. Result Disease-causing variants were detected in all eight probands by molecular genetic analysis of the WS genes (SOX10(NM_006941.4): c.544_557del, c.553 C > T, c.762delA, c.336G > A; MITF(NM_000248.3): c.626 A > T; PAX3(NM_181459.4): c.838delG, c.452-2 A > G, c.214 A > G). Six mutations (SOX10:c.553 C > T, c.544_557del, c.762delA; PAX3: c.838delG, c.214 A > G; MITF:c.626 A > T) were first reported. Clinical evaluation revealed prominent phenotypic variability in these WS patients. Twelve WS1 cases and five WS2 cases were diagnosed in total. Two probands with SOX10 mutations developed progressive changes in iris color with age, returning from pale blue at birth to normal tan. Additionally, one proband had a renal malformation (horseshoe kidneys).All cases were first described as WS cases. Congenital inner ear malformations were more common, and semicircular malformations were exclusively observed in probands with SOX10 mutations. Unilateral hearing loss occurred more often in cases with PAX3 mutations. Conclusion Our findings helped illuminate the phenotypic and genotypic spectrum of WS in Chinese populations and could contribute to better genetic counseling of WS. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01379-6.
Collapse
Affiliation(s)
- Sijun Li
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Mengyao Qin
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.,Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Changde City, Hunan, Changde, China
| | - Shuang Mao
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.,Department of Otorhinolaryngology, University of South China Affiliated Changsha Central Hospital, Changsha, Hunan, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China. .,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China. .,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| |
Collapse
|
7
|
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:3331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
Affiliation(s)
- María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Nist-Lund C, Kim J, Koehler KR. Advancements in inner ear development, regeneration, and repair through otic organoids. Curr Opin Genet Dev 2022; 76:101954. [PMID: 35853286 PMCID: PMC10425989 DOI: 10.1016/j.gde.2022.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate inner ear contains a diversity of unique cell types arranged in a particularly complex 3D cytoarchitecture. Both of these features are integral to the proper development, function, and maintenance of hearing and balance. Since the elucidation of the timing and delivery of signaling molecules to produce inner ear sensory cells, supporting cells, and neurons from human induced pluripotent stem cells, we have entered a revolution using organ-like 'otic organoid' cultures to explore inner ear specific genetic programs, developmental rules, and potential therapeutics. This review aims to highlight a selection of reviews and primary research papers from the past two years of particular merit that use otic organoids to investigate the broadly defined topics of cell reprogramming, regeneration, and repair.
Collapse
Affiliation(s)
- Carl Nist-Lund
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
| | - Jin Kim
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
9
|
Chen Z, Liu Y, Liang R, Cui C, Zhu Y, Zhang F, Zhang J, Chen X. Comparative transcriptome analysis provides insights into the molecular mechanisms of high-frequency hearing differences between the sexes of Odorrana tormota. BMC Genomics 2022; 23:296. [PMID: 35410120 PMCID: PMC9004125 DOI: 10.1186/s12864-022-08536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Acoustic communication is important for the survival and reproduction of anurans and masking background noise is a critical factor for their effective acoustic communication. Males of the concave-eared frog (Odorrana tormota) have evolved an ultrasonic communication capacity to avoid masking by the widespread background noise of local fast-flowing streams, whereas females exhibit no ultrasonic sensitivity. However, the molecular mechanisms underlying the high-frequency hearing differences between the sexes of O. tormota are still poorly understood. Results In this study, we sequenced the brain transcriptomes of male and female O. tormota, and compared their differential gene expression. A total of 4,605 differentially expressed genes (DEGs) between the sexes of O. tormota were identified and eleven of them were related to auditory based on the annotation and enrichment analysis. Most of these DEGs in males showed a higher expression trend than females in both quantity and expression quantity. The highly expressed genes in males were relatively concentrated in neurogenesis, signal transduction, ion transport and energy metabolism, whereas the up-expressed genes in females were mainly related to the growth and development regulation of specific auditory cells. Conclusions The transcriptome of male and female O. tormota has been sequenced and de novo assembled, which will provide gene reference for further genomic studies. In addition, this is the first research to reveal the molecular mechanisms of sex differences in ultrasonic hearing between the sexes of O. tormota and will provide new insights into the genetic basis of the auditory adaptation in amphibians during their transition from water to land. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08536-2.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China
| | - Yao Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Rui Liang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chong Cui
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yanjun Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Fang Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaohong Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China.
| |
Collapse
|