1
|
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang M, Gao D. CircRNA Regulation of T Cells in Cancer: Unraveling Potential Targets. Int J Mol Sci 2024; 25:6383. [PMID: 38928088 PMCID: PMC11204142 DOI: 10.3390/ijms25126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
T lymphocytes play a critical role in antitumor immunity, but their exhaustion poses a significant challenge for immune evasion by malignant cells. Circular RNAs (circRNAs), characterized by their covalently closed looped structure, have emerged as pivotal regulators within the neoplastic landscape. Recent studies have highlighted their multifaceted roles in cellular processes, including gene expression modulation and protein function regulation, which are often disrupted in cancer. In this review, we systematically explore the intricate interplay between circRNAs and T cell modulation within the tumor microenvironment. By dissecting the regulatory mechanisms through which circRNAs impact T cell exhaustion, we aim to uncover pathways crucial for immune evasion and T cell dysfunction. These insights can inform innovative immunotherapeutic strategies targeting circRNA-mediated molecular pathways. Additionally, we discuss the translational potential of circRNAs as biomarkers for therapeutic response prediction and as intervention targets. Our comprehensive analysis aims to enhance the understanding of immune evasion dynamics in the tumor microenvironment by facilitating the development of precision immunotherapy.
Collapse
Affiliation(s)
- Zelin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Shuanshuan Yin
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Kangping Yang
- The Second Clinical Medical College, Nanchang University, Nanchang 330047, China;
| | - Baojie Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Xuanhuang Wu
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Meng Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Dian Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| |
Collapse
|
2
|
Ma A, Yang Y, Lu L, Zhang Y, Zhang X, Zheng J, Zheng X. Emerging roles of circular RNAs in nasopharyngeal carcinoma: functions and implications. Cell Death Discov 2024; 10:192. [PMID: 38664370 PMCID: PMC11045839 DOI: 10.1038/s41420-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy primarily prevalent in Southern China and Southeast Asia. Circular RNAs (circRNAs), a class of non-coding RNAs, are evolutionarily conserved and exhibit remarkable stability. Their dysregulation has been observed in various cancers, including NPC. In this review, we investigate the pivotal role of circRNAs in NPC, focusing specifically on their involvement in tumor proliferation, apoptosis, metastasis, angiogenesis, stemness, metabolism, and the tumor microenvironment. We highlight the diagnostic and prognostic potential of circRNAs in NPC, emphasizing their utility as biomarkers for early detection, disease monitoring, and prediction of treatment outcomes. Additionally, we explore the therapeutic implications of circRNAs in NPC, highlighting their potential for targeted therapies.
Collapse
Affiliation(s)
- Aiyu Ma
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lu Lu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinhua Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
3
|
Wada F, Kamijo K, Shimomura Y, Yamashita D, Hara S, Ishikawa T. PD-1 expression on tumour-infiltrating cells is a prognostic factor for relapsed or refractory diffuse large B-cell lymphoma. Immunology 2024; 171:224-234. [PMID: 37904615 DOI: 10.1111/imm.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The tumour microenvironment (TME), which is modulated after immune-chemotherapy, is involved in tumour growth and metastasis. Programmed cell death 1 (PD-1) expressed on tumour-infiltrating non-malignant cells plays an important role in the TME through the PD-1/programmed cell death ligand 1 (PD-L1) signalling pathway. However, its impact in patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) remains unclear. METHODS We conducted a retrospective study using tissue samples at relapse for patients with R/R DLBCL (n = 45) and evaluated the clinical impact of PD-1 expression on tumour-infiltrating non-malignant cells (microenvironmental PD-1, mPD-1). In addition, corresponding 27 samples at diagnosis were analysed to evaluate the changes in PD-1/PD-L1 expression in the TME after chemotherapy. RESULTS Patients with mPD-1+ DLBCL showed significantly better overall survival compared with patients with mPD-1- DLBCL (hazard ratio, 0.30, p = 0.03). Among patients with mPD-1- DLBCL, those positive for neoplastic or microenvironmental PD-L1 (nPD-L1+ or mPD-L1+ ) showed significantly worse outcomes. Microenvironmental PD-1 and PD-L1 expression has high correlation at relapse, although none was found at diagnosis. CONCLUSION We determined the clinical impact of microenvironmental PD-1 expression and its relationship with neoplastic or microenvironmental expression of PD-L1 in patients with R/R DLBCL. The expression of PD-1 and PD-L1 in the TME dramatically changes during the chemotherapy. Therefore, evaluating TME at relapse, not at diagnosis is useful to predict the outcomes of R/R DLBCL patients.
Collapse
Affiliation(s)
- Fumiya Wada
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kimimori Kamijo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
4
|
Li Y, Dong H, Dong Y, Wu Q, Jiang N, Luo Q, Chen F. Distribution of CD8 T Cells and NK Cells in the Stroma in Relation to Recurrence or Metastasis of Nasopharyngeal Carcinoma. Cancer Manag Res 2022; 14:2913-2926. [PMID: 36193054 PMCID: PMC9526428 DOI: 10.2147/cmar.s365230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The purpose of this study was to explore the expression and distribution of tumor-infiltrating immune cells (TIICs) and their relationship with recurrence and metastasis of nasopharyngeal carcinoma (NPC). Methods The gene expression profiles of NPC were downloaded from GEO database (GSE53819 and GSE64634). The abundance of TIICs in NPC samples was calculated by the CIBERSORT algorithm, and TIICs with higher expression were screened in NPC. Then, we performed immunohistochemistry experiments to evaluate the expression of selected TIICs in 94 NPC samples from the Affiliated Hospital of Zunyi Medical University. We further explored the relationship between TIICs and recurrence and metastasis of NPC. Results The results based on the GEO database showed that the expression of CD8 T cells, NK cells, macrophages and plasma cells was higher than that in normal tissues. Immunohistochemistry results showed that CD8 T cells, NK cells, macrophages and plasma cells were mainly expressed in the stroma, and the expression of CD8 T cells and NK cells in the stroma of patients without recurrence or metastasis was significantly higher than that in patients with recurrence or metastasis of NPC. Kaplan–Meier analysis showed that patients with high CD8 T cells and high NK cells expression in the stroma had favorable recurrence or metastasis-free survival and overall survival (P<0.05). Univariate and multivariate Cox analyses indicated that CD8 T cells and NK cells in the stroma were independent factors for the recurrence or metastasis of NPC. Conclusion The expression of CD8 T cells, NK cells, macrophages and plasma cells is significantly higher than that in normal tissues. Among them, the expression of CD8 T cells and NK cells is closely related to the recurrence and metastasis of NPC. They are independent factors affecting the recurrence and metastasis of NPC.
Collapse
Affiliation(s)
- Yi Li
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Hui Dong
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yudi Dong
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qiaoyuan Wu
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Ni Jiang
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qing Luo
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Correspondence: Qing Luo; Fang Chen, Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, People’s Republic of China, Tel +85128608074, Email ;
| | - Fang Chen
- Department of Cancer Research Laboratory, Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
5
|
Wang YM, Peng ZY, Zhang LY, Wang YX, Fan RH, Zhang H, Jiang WH. N6-Methyladenosine RNA Modification Landscape in the Occurrence and Recurrence of Nasopharyngeal Carcinoma. World J Oncol 2022; 13:205-215. [PMID: 36128587 PMCID: PMC9451570 DOI: 10.14740/wjon1491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of squamous head and neck cancer with variable geographic distributions, with the highest incidence in Southeast Asia. Its primary treatment is radiotherapy due to its high radio sensitivity. However, the N6-methyladenosine (m6A) landscape in NPC, including recurrent NPC, has not been reported. METHODS In this study, m6A RNA immunoprecipitation (RIP) sequencing and microarray sequencing were performed on 12 tissue samples tissues of patients with primary and recurrent NPC. The expression profiles of m6A-related and non-coding RNAs were constructed and explored. Then, function experiments were performed to evaluate the effects of methyltransferase (METTL)3, METTL14 and WT1 associated protein (WTAP) on progressions of NPC. Finally, immunohistochemistry (IHC) and survival analysis were performed to confirm the correlation between METTL3, METTL14 and WTAP and NPC patients' clinical outcomes. RESULTS This study mapped m6A RNA modification and RNA expression profiles in normal nasopharynx, primary NPC, and recurrent NPC tissues. This study also explored the role of m6A modificators in NPC development and recurrence. METTL3, METTL14, and WTAP could promote invasion and metastasis of NPC, and that these three proteins could induce radiotherapy resistance in NPC cells through DNA repair. Moreover, we found that METTL3, METTL14, and WTAP promoted an increase in exosomes within NPC microenvironment. CONCLUSIONS This study suggests that the alteration of m6A modification in primary and recurrent NPCs may play an important role in the development and progression of NPC.
Collapse
Affiliation(s)
- Yu Min Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
- These authors contributed equally
| | - Zhou Ying Peng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
- These authors contributed equally
| | - Lu Yuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ya Xuan Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruo Hao Fan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Wei Hong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60:56. [PMID: 35362541 DOI: 10.3892/ijo.2022.5346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNAs that have been recently regarded as functionally active. CircRNAs are remarkably stable and known to possess several biological functions such as microRNA sponging, regulating transcription and splicing and occasionally acting as polypeptide‑producing templates. CircRNAs show tissue‑specific expression and have been reported to be associated with the progression of several types of malignancies. Given the recent progress in genome sequencing and bioinformatics techniques, a rapid increment in the biological role of circRNAs has been observed. Concurrently, the patent search from different patent databases shows that the patent number of circRNA is increasing very quickly. These phenomena reveal a rapid development of the technological landscape. In the present review, the recent progress on circRNAs in various kinds of cancer has been investigated and their function as biomarkers or therapeutic targets and their technological landscape have been appreciated. A new insight into circRNAs structure and functional capabilities in cancer has been reviewed. Continually increasing knowledge on their critical role during cancer progression is projecting them as biomarkers or therapeutic targets for various kinds of cancer. Thus, recent updates on the functional role of circRNAs in terms of the technological landscape, clinical opportunities (biomarkers and therapeutic targets), and challenges in cancer have been illustrated.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Shreya Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
7
|
Carlos-Reyes Á, Romero-Garcia S, Contreras-Sanzón E, Ruiz V, Prado-Garcia H. Role of Circular RNAs in the Regulation of Immune Cells in Response to Cancer Therapies. Front Genet 2022; 13:823238. [PMID: 35186039 PMCID: PMC8847670 DOI: 10.3389/fgene.2022.823238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (CircRNAs) are a class of small endogenous noncoding RNA that are formed by means of either the spliceosome or lariat-type splicing. CircRNAs have multiple regulatory functions and have been detected in different cell types, like normal, tumor and immune cells. CircRNAs have been suggested to regulate T cell functions in response to cancer. CircRNAs can enter into T cells and promote the expression of molecules that either trigger antitumoral responses or promote suppression and the consequent evasion to the immune response. Additionally, circRNAs may promote tumor progression and resistance to anticancer treatment in different types of neoplasias. In this minireview we discuss the impact of circRNAs and its function in the regulation of the T-cells in immune response caused by cancer therapies.
Collapse
Affiliation(s)
- Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| | | | | | - Víctor Ruiz
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| |
Collapse
|