1
|
Rolfs LA, Falat EJ, Gutzman JH. myh9b is a critical non-muscle myosin II encoding gene that interacts with myh9a and myh10 during zebrafish development in both compensatory and redundant pathways. G3 (BETHESDA, MD.) 2025; 15:jkae260. [PMID: 39503257 PMCID: PMC11708221 DOI: 10.1093/g3journal/jkae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease. This study utilized zebrafish myh9a, myh9b, and myh10 null mutants to examine potential genetic interactions and roles for each gene in development. It was determined that the myh9b gene is the most critical NMII encoding gene, as myh9b mutants develop pericardial edema and have a partially penetrant lethal phenotype, which was not observed in the other myh mutants. This study also established that genetic interactions occur between the zebrafish myh9a, myh9b, and myh10 genes where myh9b is required for the expression of both myh9a and myh10, and myh10 is required for the expression of myh9b. Additionally, protein analyses suggested that enhanced NMII protein stability in some mutant backgrounds may play a role in compensation. Finally, double mutant studies revealed different and more severe phenotypes at earlier time points than single mutants, suggesting roles for tissue specific genetic redundancy, and in some genotypes, haploinsufficiency. These mutants are the first in vivo models allowing for the study of complete loss of the NMIIA and NMIIB proteins, establishing them as valuable tools to elucidate the role of NMII encoding myh genes in development and disease.
Collapse
Affiliation(s)
- Laura A Rolfs
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
2
|
Luo H, Zhang Y, Liu F, Zhao Y, Peng J, Xu Y, Chen X, Huang Y, Ji C, Liu Q, He P, Feng P, Yang C, Wei P, Ma Z, Qin J, Zhou S, Dai S, Zhang Y, Zhao Z, Liu H, Zheng H, Zhang J, Lin Y, Chen X. The male and female genomes of golden pompano (Trachinotus ovatus) provide insights into the sex chromosome evolution and rapid growth. J Adv Res 2024; 65:1-17. [PMID: 38043610 PMCID: PMC11518962 DOI: 10.1016/j.jare.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Golden pompano (Trachinotus ovatus) is economically significant important for offshore cage aquaculture in China and Southeast Asian countries. Lack of high-quality genomic data and accurate gene annotations greatly restricts its genetic breeding progress. OBJECTIVES To decode the mechanisms of sex determination and rapid growth in golden pompano and facilitate the sex- and growth-aimed genetic breeding. METHODS Genome assemblies of male and female golden pompano were generated using Illumina, PacBio, BioNano, genetic maps and Hi-C sequencing data. Genomic comparisons, whole genome re-sequencing of 202 F1 individuals, QTL mapping and gonadal transcriptomes were used to analyze the sex determining region, sex chromosome evolution, SNP loci, and growth candidate genes. Zebrafish model was used to investigate the functions of growth candidate gene. RESULTS Female (644.45 Mb) and male (652.12 Mb) genomes of golden pompano were assembled and annotated at the chromosome level. Both genomes are highly conserved and no new or highly differentiated sex chromosomes occur. A 3.5 Mb sex determining region on LG15 was identified, where Hsd17b1, Micall2 and Lmx1a were putative candidates for sex determination. Three SNP loci significantly linked to growth were pinpointed, and a growth-linked gene gpsstr1 was identified by locus BSNP1369 (G → C, 17489695, Chr23). Loss of sstr1a (homologue of gpsstr1) in zebrafish caused growth retardation. CONCLUSION This study provides insights into sex chromosome evolution, sex determination and rapid growth of golden pompano.
Collapse
Affiliation(s)
- Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Fuyan Liu
- Biomarker Technologies, Beijing 101300, China; BGI-Beijing, Beijing 102601, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jinxia Peng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yuhui Xu
- Biomarker Technologies, Beijing 101300, China
| | - Xiuli Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | | | - Qingyun Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pingping He
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pinyuan Wei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Shengjie Zhou
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shiming Dai
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yaoyao Zhang
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, China
| | | | | | - Jisen Zhang
- Center for Genomics and Biotechnology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China.
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| |
Collapse
|
3
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
4
|
Jia Y, Chen J, Zhong J, He X, Zeng L, Wang Y, Li J, Xia S, Ye E, Zhao J, Ke B, Li C. Novel rare mutation in a conserved site of PTPRB causes human hypoplastic left heart syndrome. Clin Genet 2023; 103:79-86. [PMID: 36148623 DOI: 10.1111/cge.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a rare but fatal birth defect in which the left side of the heart is underdeveloped. HLHS accounts for 2% to 4% of congenital heart anomalies. Whole genome sequencing (WGS) was conducted for a family trio consisting of a proband and his parents. A homozygous rare variant was detected in the PTPRB (Protein Tyrosine Phosphatase Receptor Type B) gene of the proband by functional annotation and co-segregation analysis. Sanger sequencing was used to confirm genotypes of the variant. The in silico prediction tools, including Mutation Taster, SpliceAI, and CADD, were used to predict the impact of the mutation. The allele frequencies across populations were compared based on multiple databases, including "1000 genomes" and "gnomAD". We used two vectors (pcMINI and pcDNA3.1) to generate a minigene construct to validate the mutational effect at the transcriptional level. Family-based WGS analyses showed that only a homozygous splice acceptor variant (NC_000012.12: g.70636068T>G, NM_001109754.4: c.56-2A>C, NG_029940.2: g.6373A>C) at the exon-intron border of PTPRB gene associates with HLHS. This variant is also within the region with the enhancer activity based on UCSC genome annotation. Genotyping and Sanger sequencing revealed that the proband's parents are heterozygous for this variant. Evolutionary conservation analysis revealed that the site (NC_000012.12: g.70636068) is extremely conserved across species, supporting the evolutionary functional constraints of the ancestral wild type (T). In silico tools universally predicted a deleterious or disease-causing impact of the mutation from T to G. The mutation was not found in the 1000 genomes and gnomAD databases, which indicates that this mutation is very rare in most human populations. A splicing assay indicated that the mutated minigene caused aberrant splicing of mRNA, in which a 3 bp missing in the second exon resulted in the deletion of one amino acid (NP_001103224.1:p.Glu19del) compared to the normal protein of PRPTB (also the VE-PTP). Structure prediction revealed that the deletion occurred within the C-region of the signal peptide of VE-PTP, suggesting signal peptide-related defects as a potential mechanism for the HLHS cellular pathogeny. We report a rare homozygous variant with splicing error in PTPRB associated with HLHS. Previous model species studies revealed conserved functions of PTPRB in cardiovascular and heart development in mice and zebrafish. Our study is the first report to show the association between PTPRB and HLHS in humans.
Collapse
Affiliation(s)
- Yangying Jia
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zeng
- The Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Jiakun Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Erdengqieqieke Ye
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Zhao
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin Ke
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|