1
|
Song J, Tu G, Liu Y, Liu S, Zhang Y, Yang W, Pang X, Chen X, Liang H, Zhang J, Ma B. Hydroxyl groups introducing NMR strategy for structural elucidation of a heptasaccharide isolated from Trillium tschonoskii. Carbohydr Res 2025; 549:109359. [PMID: 39709710 DOI: 10.1016/j.carres.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
A heptasaccharide was isolated from an active fraction of Trillium tschonoskii using HILIC and high-temperature PGC chromatography methods. UHPLC-Q/TOF-MS analysis gave this oligosaccharide a degree of polymerization (DP) of 7 and MS/MS showed that it has a six-carbon aldehyde glucan structure with the possible chain 1 → 4 connected. The structure was determined by series 1D and 2D NMR in two solvents D2O and DMSO‑d6. Using 1H resonances of the -OH groups as the starting point and HSQC-TOCSY on the covalent structure definition for structural elucidation allowed this heptasaccharide to be uncovered. This heptasaccharide was elucidated as maltoheptaose via complete assignment of 1H and 13C with jigsaw H-C-OH pieces produced by HSQC-TOCSY at increasing mixing time. The significance of identifying maltoheptaose in Trillium tschonoskii indicates the high potential of -OH introducing strategy for other oligosaccharides' structural determination with relatively higher DP.
Collapse
Affiliation(s)
- Juan Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guangzhong Tu
- Beijing Institute of Microchemistry, Beijing, 100091, China
| | - Yue Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Si Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuting Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenxi Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Yang W, Li Z, Chen X, Wu S, Liu S, Yao L, Zhang J, Liang H, Song J, Ma B. Screening model in Caenorhabditis elegans for radioprotective natural products. Int J Radiat Biol 2025; 101:304-313. [PMID: 39746146 DOI: 10.1080/09553002.2024.2445577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/06/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Ionizing radiation (IR) could induce damage such as DNA damage and oxidative stress. Natural products, like tea, have been demonstrated potential in mitigating these damages. However, the lack of efficient and rapid screening methods for natural products hinders their widespread application. To address this challenge, this study utilized Caenorhabditis elegans (C. elegans) as an in vivo model to investigate radioprotective natural products. METHODS L1 stage C. elegans were exposed to X-rays or 60Co γ-rays at varying dosages (20, 50, and 100 Gy), then the growth, reproduction, and lifespan of the nematodes were observed. Different culture and sample-administered modes were tested. Known radioprotective agents, including Amifostine (WR2721), Lycium barbarum extract (LBE), and Trillium tschonoskii fraction (TTF), served as positive controls to validate the reliability of the model. The radioprotective activity of teas with different fermentation degrees was compared based on this screening model. RESULTS A screening model in C. elegans was established by X-rays at 20 Gy. An appropriate sample-administrated approach was investigated, which involves adding the sample to the nematode growth medium (NGM) agar covered with inactivated Escherichia coli 2 h before irradiation. The known radioprotective agents (WR2721, LBE, and TTF) validated that the model is stable. Our results of the model application revealed that teas with lower fermentation levels, such as green tea and oolong tea, particularly the n-butanol and ethyl acetate fractions from oolong tea, exhibited significant radioprotective activity. CONCLUSIONS This study presents an effective in vivo approach for the initial screening of radioprotective natural products.
Collapse
Affiliation(s)
- Wenxi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Wu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation Medicine, Beijing, China
| | - Si Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan Yao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haizhen Liang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Juan Song
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
4
|
Song J, Liu Y, Yin X, Nan Y, Shi Y, Chen X, Liang H, Zhang J, Ma B. Isolation and structural elucidation of prebiotic oligosaccharides from Ziziphi Spinosae Semen. Carbohydr Res 2023; 534:108948. [PMID: 37783055 DOI: 10.1016/j.carres.2023.108948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Six oligosaccharides were discovered and isolated for the first time from Ziziphi Spinosae Semen. On the basis of spectroscopic analysis, their structures were determined to be verbascose (1), verbascotetraose (2), stachyose (3), manninotriose (4), raffinose (5), and melibiose (6). The prebiotic effect of the oligosaccharide fraction was assayed by eight gut bacterial growth in vitro, revealing a significant increase in cell density, up to 4-fold, for Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus johnsonii. The impact of six oligosaccharides with different degrees of polymerization (DPs) and structures on the growth of Lactobacillus acidophilus was evaluated. As a result, stachyose and raffinose demonstrated superior support for bacterial growth compared to the other oligosaccharides. This study explored the structure-activity relationship of raffinose family oligosaccharides (RFOs) and showed that the more the monosaccharide type, the more supportive the gut bacteria growth when oligosaccharides have the same molecular weight.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yue Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China
| | - Xiangchang Yin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi Nan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhao Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Hongzhi D, Xiaoying H, Yujie G, Le C, Yuhuan M, Dahui L, Luqi H. Classic mechanisms and experimental models for the anti‐inflammatory effect of traditional Chinese medicine. Animal Model Exp Med 2022; 5:108-119. [PMID: 35412027 PMCID: PMC9043716 DOI: 10.1002/ame2.12224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is a common disease involved in the pathogenesis, complications, and sequelae of a large number of related diseases, and therefore considerable research has been directed toward developing anti‐inflammatory drugs for the prevention and treatment of these diseases. Traditional Chinese medicine (TCM) has been used to treat inflammatory and related diseases since ancient times. According to the review of abundant modern scientific researches, it is suggested that TCM exhibit anti‐inflammatory effects at different levels, and via multiple pathways with various targets, and recently a series of in vitro and in vivo anti‐inflammatory models have been developed for anti‐inflammation research in TCM. Currently, the reported classic mechanisms of TCM and experimental models of its anti‐inflammatory effects provide reference points and guidance for further research and development of TCM. Importantly, the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation‐related diseases.
Collapse
Affiliation(s)
- Du Hongzhi
- National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Hou Xiaoying
- Wuhan Biomedical Research Institute, School of Medicine Jiang Han University Wuhan China
| | - Guo Yujie
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Chen Le
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Miao Yuhuan
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Liu Dahui
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| |
Collapse
|