1
|
Sukati S, Rattanatham R, Masangkay FR, Tseng CP, Kotepui M. Alterations in von Willebrand Factor Levels in Patients with Malaria: A Systematic Review and Meta-Analysis of Disease Severity. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:767. [PMID: 40283058 PMCID: PMC12028635 DOI: 10.3390/medicina61040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Elevated von Willebrand factor (vWF) levels have been reported in malaria, but their relationship with disease severity remains unclear. This study aimed to compare vWF levels between Plasmodium-infected and uninfected individuals and assess changes in severe infections. Materials and Methods: The systematic review was registered in PROSPERO (CRD42024558479). A comprehensive search across six databases identified studies reporting vWF levels in malaria. A meta-analysis was conducted using a random-effects model, with standardized mean difference (SMD) as the effect measure due to varying measurement units. Heterogeneity was assessed using the I2 statistic. Results: Of 1647 identified records, 26 studies met the inclusion criteria. The meta-analysis showed significantly higher vWF levels in Plasmodium-infected individuals compared to uninfected controls (p < 0.001, SMD: 2.689 [95% CI 1.362; 4.017], I2: 98.1%, 12 studies, 3109 participants). However, no significant difference was found between severe and less severe cases (p = 0.051, SMD: 3.551 [95% CI -0.007; 7.109], I2: 99.3%, 8 studies, 1453 participants). Conclusions: vWF levels are significantly elevated in individuals with Plasmodium infections, indicating a potential role in malaria pathophysiology. Although levels tend to be higher in severe cases, current evidence is insufficient to support vWF as a reliable marker for disease severity. Further prospective and well-controlled studies are needed to validate its diagnostic and prognostic value in malaria management.
Collapse
Affiliation(s)
- Suriyan Sukati
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Rujikorn Rattanatham
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | | | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Manas Kotepui
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| |
Collapse
|
2
|
Aye SSS, Fang Z, Wu MCL, Lim KS, Ju LA. Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms. Biomater Sci 2025; 13:1131-1160. [PMID: 39834160 DOI: 10.1039/d4bm01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of in vitro thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.
Collapse
Affiliation(s)
- San Seint Seint Aye
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Zhongqi Fang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Mike C L Wu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Khoon S Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Evbuomwan IO, Adeyemi OS, Oluba OM. Aqueous extract of Enantia chlorantha Oliv. demonstrates antimalarial activity and improves redox imbalance and biochemical alterations in mice. BMC Complement Med Ther 2025; 25:73. [PMID: 39994639 PMCID: PMC11849376 DOI: 10.1186/s12906-025-04745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Malaria is an infectious disease, which has continued to cause inconceivable loss of lives every year, almost unabatedly. Currently, it has become more difficult to treat the disease due to the emergence and spread of resistance to recommended antimalarial drugs. This situation necessitates an urgent search for antimalarial compounds with unique modes of action. Here, we investigate the antimalarial activity, antioxidant and anti-inflammatory capacity of Enantia chlorantha aqueous stem bark extract (EcASBE) in vivo. METHODS The extract was screened for selected phytoconstituents including alkaloids and flavonoids. We evaluated the antimalarial activity of EcASBE against Plasmodium berghei NK65 infection in mice, using curative, prophylactic, and suppressive antimalarial test models, respectively. In addition, the antioxidant and anti-inflammatory activities of the extract were assessed. RESULTS The EcASBE significantly (p < 0.05) inhibited parasitaemia dose-dependently, with the highest inhibition (80.4%) and prolonged survival (MST = 20) observed in the curative test. Our findings reveal significant (p < 0.05) improvement of serum ALT, AST, ALP, GGT, and levels of TNF-α, creatinine and urea following extract administration. Furthermore, the extract led to a significant (p < 0.05) rise in the levels of CAT, SOD, GPx, and GSH, with a concomitant reduction in NO and MDA levels. CONCLUSION The antimalarial, antioxidative, antiperoxidative, and inflammatory-inhibiting properties of the plant in infected mice demonstrate its great value for therapeutic intervention, and substantiate its use in traditional medicine for malaria treatment. Hence, further investigation to identify the repertoire of the active antimalarial components is warranted.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-being Research Cluster, Landmark University, Ipetu Road, PMB 1001, Omu-Aran- 251101, Nigeria.
- Department of Biochemistry, Landmark University, Ipetu Road, PMB 1001, Omu-Aran-251101, Nigeria.
- Department of Food Science and Microbiology, Landmark University, Ipetu Road, PMB 1001, Omu-Aran-251101, Nigeria.
- Host-Pathogen Interactions and Disease Modeling Laboratory, Special Center for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi-110067, India.
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Bowen University, Iwo, 232101, Nigeria.
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan.
| | - Olarewaju Michael Oluba
- International Centre for Infectious Diseases, Biosafety and Biosecurity Research, Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu, Nigeria.
| |
Collapse
|
4
|
Naser RH, Rajaii T, Farash BRH, Seyyedtabaei SJ, Hajali V, Sadabadi F, Saburi E. Hematological changes due to malaria - An update. Mol Biochem Parasitol 2024; 259:111635. [PMID: 38857772 DOI: 10.1016/j.molbiopara.2024.111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Malaria, a parasitic infection caused by the genus Plasmodium, results to over 20 million reported cases annually worldwide. Most individuals exhibit various symptoms, and blood analysis plays a crucial role in determining the appropriate treatment approach. This study discusses various hematologic complications associated with different Plasmodium species. A review of scientific databases including PubMed, Science Direct, Web of Science, Scopus, EMBASE, Magiran, SID, IranMedex was conducted using standard keywords such as Plasmodium, malaria, anemia and blood disorders (hematologic disorder) between 2000 and 2024. The review focused on articles pertaining to clinical trials, prospective cohort, retrospective, cross-sectional and case-control studies. Articles evaluating the effects of malaria on blood cells and indices, with target groups including human and animals, were included. Articles not written in English or Farsi were excluded. Our review revealed that, apart from iron deficiency anemia and vascular dysfunction contributed in part by adhesion of infected RBC to endothelium, decreases in hematocrit and hemoglobin levels, as part of pancytopenia and thrombocytopenia, are characteristic of Plasmodium infection. Additionally, the occurrence of inflammation due to the release of inflammatory cytokines and complement activation can complicate the clinical features of malaria in individuals with hematologic conditions.
Collapse
Affiliation(s)
- Rana Hussein Naser
- Department of Science, College of Basic Education, University of Diyala, Iraq
| | - Toktam Rajaii
- Health center no.1, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Razieh Hosseini Farash
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cutaneous Leishmania Research Center, Mashhad University of Medical Sciences, Iran
| | | | - Vahid Hajali
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadabadi
- Cutaneous Leishmania Research Center, Mashhad University of Medical Sciences, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tomassi MV, D'Abramo A, Vita S, Corpolongo A, Vulcano A, Ascoli Bartoli T, Bartolini B, Faraglia F, Nicastri E. A case of severe Plasmodium ovale malaria with acute respiratory distress syndrome and splenic infarction in a male traveller presenting in Italy. Malar J 2024; 23:93. [PMID: 38575935 PMCID: PMC10993526 DOI: 10.1186/s12936-024-04911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Plasmodium ovale malaria is usually considered a tropical infectious disease associated with low morbidity and mortality. However, severe disease and death have previously been reported. CASE PRESENTATION A case of severe P. ovale malaria in a healthy Caucasian man with a triangle splenic infarction and clinical progression towards Acute Respiratory Distress Syndrome was reported despite a rapid response to oral chloroquine treatment with 24-h parasitaemia clearance. CONCLUSION Plasmodium ovale malaria is generally considered as a benign disease, with low parasitaemia. However, severe disease and death have occasionally been reported. It is important to be aware that occasionally it can progress to serious illness and death even in immunocompetent individuals.
Collapse
Affiliation(s)
- Maria Virginia Tomassi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Alessandra D'Abramo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Serena Vita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Angela Corpolongo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Antonella Vulcano
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Tommaso Ascoli Bartoli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Barbara Bartolini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Francesca Faraglia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| |
Collapse
|
6
|
Akafity G, Kumi N, Ashong J. Diagnosis and management of malaria in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:3-15. [PMID: 38263976 PMCID: PMC10800773 DOI: 10.1016/j.jointm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 01/25/2024]
Abstract
Malaria is responsible for approximately three-quarters of a million deaths in humans globally each year. Most of the morbidity and mortality reported are from Sub-Saharan Africa and Asia, where the disease is endemic. In non-endemic areas, malaria is the most common cause of imported infection and is associated with significant mortality despite recent advancements and investments in elimination programs. Severe malaria often requires intensive care unit admission and can be complicated by cerebral malaria, respiratory distress, acute kidney injury, bleeding complications, and co-infection. Intensive care management includes prompt diagnosis and early initiation of effective antimalarial therapy, recognition of complications, and appropriate supportive care. However, the lack of diagnostic capacities due to limited advances in equipment, personnel, and infrastructure presents a challenge to the effective diagnosis and management of malaria. This article reviews the clinical classification, diagnosis, and management of malaria as relevant to critical care clinicians, highlighting the role of diagnostic capacity, treatment options, and supportive care.
Collapse
Affiliation(s)
- George Akafity
- Department of Research, Monitoring, and Evaluation, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Nicholas Kumi
- Intensive Care Unit, Department of Critical Care and Anesthesia, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Joyce Ashong
- Department of Paediatrics and Child Health, Cape Coast Teaching Hospital, Cape Coast, Ghana
| |
Collapse
|
7
|
Silva Pereira S, Brás D, Porqueddu T, Nascimento AM, De Niz M. Investigation of Trypanosoma-induced vascular damage sheds insights into Trypanosoma vivax sequestration. Cell Surf 2023; 10:100113. [PMID: 37954640 PMCID: PMC10632540 DOI: 10.1016/j.tcsw.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
Multiple blood-borne pathogens infecting mammals establish close interactions with the host vascular endothelium as part of their life cycles. In this work, we investigate differences in the interactions of three Trypanosoma species: T. brucei, T. congolense and T. vivax with the blood vasculature. Infection with these species results in vastly different pathologies, including different effects on vascular homeostasis, such as changes in vascular permeability and microhemorrhages. While all three species are extracellular parasites, T. congolense is strictly intravascular, while T. brucei is capable of surviving both extra- and intravascularly. Our knowledge regarding T. vivax tropism and its capacity of migration across the vascular endothelium is unknown. In this work, we show for the first time that T. vivax parasites sequester to the vascular endothelium of most organs, and that, like T. congolense, T. vivax Y486 is largely incapable of extravasation. Infection with this parasite species results in a unique effect on vascular endothelium receptors including general downregulation of ICAM1 and ESAM, and upregulation of VCAM1, CD36 and E-selectin. Our findings on the differences between the two sequestering species (T. congolense and T. vivax) and the non-sequestering, but extravasating, T. brucei raise important questions on the relevance of sequestration to the parasite's survival in the mammalian host, and the evolutionary relevance of both sequestration and extravasation.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Daniela Brás
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Teresa Porqueddu
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Nascimento
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Center for Advanced Microscopy and Nikon Imaging Center, Northwestern University, Chicago, USA
| |
Collapse
|
8
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
9
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
10
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Hu X, Zhao J, Zhao J, Yang E, Jia M. Genome-wide liver transcriptomic profiling of a malaria mouse model reveals disturbed immune and metabolic responses. Parasit Vectors 2023; 16:40. [PMID: 36717945 PMCID: PMC9885691 DOI: 10.1186/s13071-023-05672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The liver is responsible for a range of functions in vertebrates, such as metabolism and immunity. In malaria, the liver plays a crucial role in the interaction between the parasite and host. Although malarial hepatitis is a common clinical complication of severe malaria, other malaria-related liver changes have been overlooked during the blood stage of the parasite life-cycle, in contrast to the many studies that have focused on parasite invasion of and replication in the liver during the hepatic stage of the parasite. METHODS A rodent model of malaria was established using Plasmodium yoelii strain 17XL, a lethal strain of rodent malaria, for liver transcriptomic profiling. RESULTS Differentially expressed messenger RNAs were associated with innate and adaptive immune responses, while differentially expressed long noncoding RNAs were enriched in the regulation of metabolism-related pathways, such as lipid metabolism. The coexpression network showed that host genes were related to cellular transport and tissue remodeling. Hub gene analysis of P. yoelii indicated that ubiquitination genes that were coexpressed with the host were evolutionarily conserved. CONCLUSIONS Our analysis yielded evidence of activated immune responses, aberrant metabolic processes and tissue remodeling changes in the livers of mice with malaria during the blood stage of the parasite, which provided a systematic outline of liver responses during Plasmodium infection.
Collapse
Affiliation(s)
- Xueyan Hu
- grid.11135.370000 0001 2256 9319Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jie Zhao
- grid.11135.370000 0001 2256 9319Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Junhui Zhao
- grid.11135.370000 0001 2256 9319Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Ence Yang
- grid.11135.370000 0001 2256 9319Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Mozhi Jia
- grid.11135.370000 0001 2256 9319Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| |
Collapse
|
12
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
13
|
The IL-33/ST2 Pathway in Cerebral Malaria. Int J Mol Sci 2022; 23:ijms232113457. [PMID: 36362246 PMCID: PMC9658244 DOI: 10.3390/ijms232113457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Interleukin-33 (IL-33) is an immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. IL-33 is abundant within the brain and spinal cord tissues where it acts as a key cytokine to coordinate the exchange between the immune and central nervous system (CNS). In this review, we report the recent advances to our knowledge regarding the role of IL-33 and of its receptor ST2 in cerebral malaria, and in particular, we highlight the pivotal role that IL-33/ST2 signaling pathway could play in brain and cerebrospinal barriers permeability. IL-33 serum levels are significantly higher in children with severe Plasmodium falciparum malaria than children without complications or noninfected children. IL-33 levels are correlated with parasite load and strongly decrease with parasite clearance. We postulate that sequestration of infected erythrocytes or merozoites liberation from schizonts could amplify IL-33 production in endothelial cells, contributing either to malaria pathogenesis or recovery.
Collapse
|
14
|
Wuttimongkolchai N, Kanlaya R, Nanthawuttiphan S, Subkod C, Thongboonkerd V. Chlorogenic acid enhances endothelial barrier function and promotes endothelial tube formation: A proteomics approach and functional validation. Biomed Pharmacother 2022; 153:113471. [DOI: 10.1016/j.biopha.2022.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022] Open
|