1
|
Huang HL, Grandinetti G, Heissler SM, Chinthalapudi K. Cryo-EM structures of the membrane repair protein dysferlin. Nat Commun 2024; 15:9650. [PMID: 39511170 PMCID: PMC11544258 DOI: 10.1038/s41467-024-53773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Plasma membrane repair in response to damage is essential for cell viability. The ferlin family protein dysferlin plays a key role in Ca2+-dependent membrane repair in striated muscles. Mutations in dysferlin lead to a spectrum of diseases known as dysferlinopathies. The lack of a structure of dysferlin and other ferlin family members has impeded a mechanistic understanding of membrane repair mechanisms and the development of therapies. Here, we present the cryo-EM structures of the full-length human dysferlin monomer and homodimer at 2.96 Å and 4.65 Å resolution. These structures define the architecture of dysferlin, ferlin family-specific domains, and homodimerization mechanisms essential to function. Furthermore, biophysical and cell biology studies revealed how missense mutations in dysferlin contribute to disease mechanisms. In summary, our study provides a framework for the molecular mechanisms of dysferlin and the broader ferlin family, offering a foundation for the development of therapeutic strategies aimed at treating dysferlinopathies.
Collapse
Affiliation(s)
- Hsiang-Ling Huang
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
| | - Giovanna Grandinetti
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
| |
Collapse
|
2
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
3
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
4
|
Yasa J, Reed CE, Bournazos AM, Evesson FJ, Pang I, Graham ME, Wark JR, Nijagal B, Kwan KH, Kwiatkowski T, Jung R, Weisleder N, Cooper ST, Lemckert FA. Minimal expression of dysferlin prevents development of dysferlinopathy in dysferlin exon 40a knockout mice. Acta Neuropathol Commun 2023; 11:15. [PMID: 36653852 PMCID: PMC9847081 DOI: 10.1186/s40478-022-01473-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.
Collapse
Affiliation(s)
- Joe Yasa
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia
| | - Claudia E. Reed
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Adam M. Bournazos
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Frances J. Evesson
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Ignatius Pang
- grid.414235.50000 0004 0619 2154Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Mark E. Graham
- grid.414235.50000 0004 0619 2154Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Jesse R. Wark
- grid.1013.30000 0004 1936 834XOperations, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Brunda Nijagal
- grid.1008.90000 0001 2179 088XMetabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Kim H. Kwan
- grid.1008.90000 0001 2179 088XMetabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Thomas Kwiatkowski
- grid.268132.c0000 0001 0701 2416West Chester University, West Chester, PA 19383 USA
| | - Rachel Jung
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210-1252 USA
| | - Noah Weisleder
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210-1252 USA
| | - Sandra T. Cooper
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Frances A. Lemckert
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| |
Collapse
|