1
|
Development and Validation of a Combined Ferroptosis and Immune Prognostic Model for Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:1840361. [DOI: 10.1155/2022/1840361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Background. Melanoma development and progression are significantly influenced by ferroptosis and the immune microenvironment. However, there are no reliable biomarkers for melanoma prognosis prediction based on ferroptosis and immunological response. Methods. Ferroptosis-related genes (FRGs) were retrieved from the FerrDb website. Immune-related genes (IRGs) were collected in the ImmPort dataset. The TCGA (The Cancer Genome Atlas) and GSE65904 datasets both contained prognostic FRGs and IRGs. The model was created using multivariate Cox regression, the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and the analysis and comparison between the expression patterns of ferroptosis and immune cell infiltration were done. Last but not least, research was conducted to assess the expression and involvement of the genes in the comprehensive index of ferroptosis and immune (CIFI). Results. Two prognostic ferroptosis- and immune-related markers (PDGFRB and FOXM1) were utilized to develop a CIFI. In various datasets and patient subgroups, CIFI exhibits consistent predictive performance. The fact that CIFI is an independent prognostic factor for melanoma patients was revealed. Patients in the CIFI-high group further exhibited immune-suppressive characteristics and had elevated ferroptosis gene expression levels. The results of in vitro research point to the possibility that the PDGFRB and FOXM1 genes function as oncogenes in melanoma. Conclusion. In this study, a novel prognostic classifier for melanoma patients was developed and validated using ferroptosis and immune expression profiles.
Collapse
|
2
|
Xing J, Jia Z, Li Y, Han Y. Construction of immunotherapy-related prognostic gene signature and small molecule drug prediction for cutaneous melanoma. Front Oncol 2022; 12:939385. [PMID: 35957907 PMCID: PMC9358033 DOI: 10.3389/fonc.2022.939385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cutaneous melanoma (CM), a kind of skin cancer with a high rate of advanced mortality, exhibits a wide variety of driver and transmitter gene alterations in the immunological tumor microenvironment (TME) associated with tumor cell survival and proliferation. Methods We analyzed the immunological infiltration of TME cells in normal and malignant tissues using 469 CM and 556 normal skin samples. We used a single sample gene set enrichment assay (ssGSEA) to quantify the relative abundance of 28 cells, then used the LASSO COX regression model to develop a riskScore prognostic model, followed by a small molecule drug screening and molecular docking validation, which was then validated using qRT-PCR and IHC. Results We developed a prognosis model around seven essential protective genes for the first time, dramatically elevated in tumor tissues, as did immune cell infiltration. Multivariate Cox regression results indicated that riskScore is an independent and robust prognostic indicator, and its predictive value in immunotherapy was verified. Additionally, we identified Gabapentin as a possible small molecule therapeutic for CM. Conclusions A riskScore model was developed in this work to analyze patient prognosis, TME cell infiltration features, and treatment responsiveness. The development of this model not only aids in predicting patient response to immunotherapy but also has significant implications for the development of novel immunotherapeutic agents and the promotion of tailored treatment regimens.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Jia
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| |
Collapse
|
3
|
Xu Y, Chen Y, Niu Z, Xing J, Yang Z, Yin X, Guo L, Zhang Q, Qiu H, Han Y. A Novel Pyroptotic and Inflammatory Gene Signature Predicts the Prognosis of Cutaneous Melanoma and the Effect of Anticancer Therapies. Front Med (Lausanne) 2022; 9:841568. [PMID: 35492358 PMCID: PMC9053829 DOI: 10.3389/fmed.2022.841568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe purpose of this study was to construct a gene signature comprising genes related to both inflammation and pyroptosis (GRIPs) to predict the prognosis of patients with cutaneous melanoma patients and the efficacy of immunotherapy, chemotherapy, and targeted therapy in these patients.MethodsGene expression profiles were collected from The Cancer Genome Atlas. Weighted gene co-expression network analysis was performed to identify GRIPs. Univariable Cox regression and Lasso regression further selected key prognostic genes. Multivariable Cox regression was used to construct a risk score, which stratified patients into high- and low-risk groups. Areas under the ROC curves (AUCs) were calculated, and Kaplan-Meier analyses were performed for the two groups, following validation in an external cohort from Gene Expression Omnibus (GEO). A nomogram including the GRIP signature and clinicopathological characteristics was developed for clinical use. Gene set enrichment analysis illustrated differentially enriched pathways. Differences in the tumor microenvironment (TME) between the two groups were assessed. The efficacies of immune checkpoint inhibitors (ICIs), chemotherapeutic agents, and targeted agents were predicted for both groups. Immunohistochemical analyses of the GRIPs between the normal and CM tissues were performed using the Human Protein Atlas data. The qRT-PCR experiments validated the expression of genes in CM cell lines, Hacat, and PIG1 cell lines.ResultsA total of 185 GRIPs were identified. A novel gene signature comprising eight GRIPs (TLR1, CCL8, EMP3, IFNGR2, CCL25, IL15, RTP4, and NLRP6) was constructed. The signature had AUCs of 0.714 and 0.659 for predicting 3-year overall survival (OS) in the TCGA entire and GEO validation cohorts, respectively. Kaplan-Meier analyses revealed that the high-risk group had a poorer prognosis. Multivariable Cox regression showed that the GRIP signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The nomogram showed good accuracy and reliability in predicting 3-year OS (AUC = 0.810). GSEA and TME analyses showed that the high-risk group had lower levels of pyroptosis, inflammation, and immune response, such as lower levels of CD8+ T-cell infiltration, CD4+ memory-activated T-cell infiltration, and ICI. In addition, low-risk patients whose disease expressed PD-1 or CTLA-4 were likely to respond better to ICIs, and several chemotherapeutic and targeted agents. Immunohistochemical analysis confirmed the distinct expression of five out of the eight GRIPs between normal and CM tissues.ConclusionOur novel 8-GRIP signature can accurately predict the prognosis of patients with CM and the efficacies of multiple anticancer therapies. These GRIPs might be potential prognostic biomarkers and therapeutic targets for CM.
Collapse
Affiliation(s)
- Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zehao Niu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Haixia Qiu
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Yan Han
| |
Collapse
|