1
|
Iaia N, Noviello C, Muscaritoli M, Costelli P. Inflammation in cancer cachexia: still the central tenet or just another player? Am J Physiol Cell Physiol 2025; 328:C1837-C1852. [PMID: 40250836 DOI: 10.1152/ajpcell.00808.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Cancer cachexia, a multifactorial syndrome characterized by body weight loss, muscle, and adipose tissue wasting, affects patients with cancer. Over time, the definition of cachexia has been modified, including inflammation as one of the main causal factors. Evidence has suggested that a range of proinflammatory mediators may be involved in the regulation of intracellular signaling, resulting in enhanced resting energy expenditure, metabolic changes, and muscle atrophy, all of which are typical features of cachexia. Physiologically speaking, however, inflammation is a response aimed at facing potentially damaging events. Along this line, its induction in the cancer hosts could be an attempt to restore the physiological homeostasis. Interesting observations have shown that cytokines such as interleukins 4 and 6 could improve muscle wasting, supporting the view that the same mediator may exert pro- or anti-inflammatory activity depending on the immune cells involved as well as on the tissue metabolic demand. In conclusion, whether inflammation is crucial to the occurrence of cachexia or just one contributor among others, is still unclear. Indeed, while inflammation is a trigger of cachexia, the alterations of energy and protein metabolism and of the hormonal homeostasis occurring in cachexia likely act as inflammatory stimuli on their own. Whether the causative role prevails over the compensatory one likely depends on the tumor type and stage, patient lifestyle, the presence of comorbidities, and the response to anticancer treatments paving the way to a holistic, personalized approach to cancer cachexia.
Collapse
Affiliation(s)
- Noemi Iaia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Noviello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
2
|
Harris CS, Conley YP, Bai J, Hammer MJ. The Use of Biomarkers in Precision Health Symptom Science-Opportunities and Challenges. Semin Oncol Nurs 2025:151886. [PMID: 40268586 DOI: 10.1016/j.soncn.2025.151886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES Precision health symptom science applies person-centered approaches to elucidate interindividual differences in patients' symptom experiences and incorporates omics methods with social, societal, and environmental determinants of health to develop symptom management strategies. By filling scientific gaps related to patients' symptom experiences and their underlying mechanisms, interventions can be developed to improve quality of life and outcomes. The purposes of this article are to describe symptom phenotype development; review analytical approaches to identify a symptom phenotype; and discuss common and emerging methods for biomarker discovery and their implications in precision health symptom science. METHODS Peer-reviewed research studies, review articles, and scientific expertise were synthesized to provide a broad overview of several methods of biomarker discovery and their implications for precision health symptom science. RESULTS Approaches to symptom phenotype development and analytical methods for phenotype identification were reviewed. Common (ie, genomic, epigenomic, transcriptomic, proteomic, metabolomic, microbiome) and emerging (ie, polygenic risk scores, microRNA, epigenetic clocks, allostatic load, wearables) methods for biomarker discovery were described. Each method provides unique information to improve our understanding of the complex biological processes that underlie symptoms and may be used for risk prediction, screening, surveillance, and treatment response. CONCLUSIONS While the exemplar approaches to conducting precision health symptom science were shared through an oncology lens, they are generalizable across acute and chronic conditions. IMPLICATIONS FOR NURSING PRACTICE Symptom biomarker identification is inherently complex and the methods for biomarker collection, processing, measurement, and analysis are continually evolving. Therefore, symptom scientists need to form transdisciplinary teams with experts in omics methodologies and bioinformatics. Despite the challenges, symptom scientists are well suited to lead the way in precision health symptom science to reduce symptom burden and improve quality of life among patients with various chronic conditions.
Collapse
Affiliation(s)
| | | | - Jinbing Bai
- School of Nursing, Emory University, Atlanta, Georgia
| | | |
Collapse
|
3
|
Lamorte D, Calice G, Trino S, Santodirocco M, Caivano A, De Luca L, Laurenzana I. Acute myeloid leukemia-derived extracellular vesicles induced DNA methylation changes responsible for inflammatory program in normal hematopoietic stem progenitor cells. Front Immunol 2025; 16:1569159. [PMID: 40276507 PMCID: PMC12018244 DOI: 10.3389/fimmu.2025.1569159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Acute Myeloid Leukemia (AML) cells communicate with surrounding normal cells, including hematopoietic stem progenitor cells (HSPCs), in the bone marrow, and modify their fate supporting tumor growth. This communication can be mediated by Extracellular Vesicles (EVs), small vectors carrying a range of tumor molecular information. One of the hallmarks of AML is the aberrant DNA methylation. It is not known if and how AML cells can modify the epigenomic profile of healthy HSPCs. Here, we investigated the DNA methylation profile of HSPCs after exposure to AML derived-EVs. Methods Cord blood derived-HSPCs were treated with AML cell line derived-EVs for 20 hours and then their DNA methylation profile was analyzed by methylation array. We cross-referenced differential methylated genes (dmGs) with differential expressed genes (deGs) obtained by gene expression profile of same EV treated-HSPCs. Gene ontology was performed on dmGs and deGs. To confirm the expression of some genes, digital PCR was applied. Results AML-EVs induced DNA methylation changes in HSPCs after short time exposure, showing 110-890 dmGs. In particular, we reported a DNA hypo-methylation in both promoter and body regions. DmGs showed an enrichment in hematopoietic and immunological processes, inflammation, cell movement and AML pathways. The intersection between dmGs and deGs identified 20 common genes, including DSE, SEMA4A, NFKB1 and MTSS1, whose over-expression could be associated with the hypo-methylation of their gene body, and other ones, such as SLA and CUTA whose down-expression could be associated with the hypo-methylated promoter. These deGs were involved in NF-kB pathway, interleukin mediate Toll like receptor signaling and, of note, in tumor. Conclusion This study is the first proof-of-concept that AML-EVs were able to induce changes in DNA methylation of HSPCs modulating the expression of genes involved in inflammatory processes capable of modifying normal hematopoiesis towards leukemic like processes.
Collapse
Affiliation(s)
- Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia Cord Blood Bank (CBB), Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| |
Collapse
|
4
|
Omran TZ, Jasmi FSOA, Obaid KM, Ghareeb AKR, Alsailawi HA, Mudhafar M. The interleukin gene landscape: understanding its influence on inflammatory mechanisms in apical periodontitis. Mol Biol Rep 2025; 52:365. [PMID: 40192910 DOI: 10.1007/s11033-025-10477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Apical periodontitis is a common inflammatory illness caused by microbial infections in the root canal system, which destroys the periapical tissue. This disease's course and severity are highly regulated by a complex interaction of host immunological responses and genetic variables, particularly interleukin (IL) gene polymorphisms. These genetic variants influence cytokine production, the inflammatory cascade, and the ability to resolve infections. Polymorphisms in important cytokines (e.g., IL-1β, IL-6, IL-10, TNF-α, and IL-17) have been linked to worsening or reducing inflammation, affecting the clinical presentation and chronicity of apical periodontitis. A thorough examination of the molecular and clinical consequences of interleukin polymorphisms in apical periodontitis is given in this article. It emphasizes their function in regulating bone resorption, tissue degradation, and immune cell signaling. Their value in enhancing diagnostic precision, forecasting disease susceptibility, and directing treatment approaches is demonstrated by the incorporation of genetic insights into clinical practice. Targeted therapies, like immunomodulatory drugs and cytokine inhibitors, have great potential to reduce inflammation and encourage periapical healing. Future studies should focus on population-based research to examine genetic variability across ethnic groups, functional investigations to clarify the mechanisms behind polymorphism-driven cytokine regulation, and longitudinal studies to evaluate illness trajectories. Furthermore, developments in precision medicine and bioinformatics could completely transform patient-specific strategies by providing customized treatments and diagnostics. This review highlights the necessity of a multidisciplinary strategy that integrates immunology, genetics, and clinical practice to maximize apical periodontitis therapy and enhance dental health outcomes worldwide.
Collapse
Affiliation(s)
- Tuqa Z Omran
- Department of Basic Sciences, College of Dentistry, University of Kerbala, Karbala, 56001, Iraq
| | | | - Kawthar Mahdi Obaid
- College of Dentistry, Al-Ameed University, Najaf Highway Front of Pole (1238), Karbala, Iraq
| | - Ammr Kareem Rashid Ghareeb
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, Karbala, Karbala, 56001, Iraq
| | - Hasan Ali Alsailawi
- Department of Basic Sciences, College of Dentistry, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques, AlSafwa University College, Karbala, Iraq
| | - Mustafa Mudhafar
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, Karbala, Karbala, 56001, Iraq.
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq.
| |
Collapse
|
5
|
Nishida A, Andoh A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025; 14:488. [PMID: 40214442 PMCID: PMC11987742 DOI: 10.3390/cells14070488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammation is an essential component of the immune response that protects the host against pathogens and facilitates tissue repair. Chronic inflammation is a critical factor in cancer development and progression. It affects every stage of tumor development, from initiation and promotion to invasion and metastasis. Tumors often create an inflammatory microenvironment that induces angiogenesis, immune suppression, and malignant growth. Immune cells within the tumor microenvironment interact actively with cancer cells, which drives progression through complex molecular mechanisms. Chronic inflammation is triggered by factors such as infections, obesity, and environmental toxins and is strongly linked to increased cancer risk. However, acute inflammatory responses can sometimes boost antitumor immunity; thus, inflammation presents both challenges and opportunities for therapeutic intervention. This review examines how inflammation contributes to tumor biology, emphasizing its dual role as a critical factor in tumorigenesis and as a potential therapeutic target.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Shiga, Japan;
| | | |
Collapse
|
6
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
7
|
Park MN, Choi J, Maharub Hossain Fahim M, Asevedo EA, Nurkolis F, Ribeiro RIMA, Kang HN, Kang S, Syahputra RA, Kim B. Phytochemical synergies in BK002: advanced molecular docking insights for targeted prostate cancer therapy. Front Pharmacol 2025; 16:1504618. [PMID: 40034825 PMCID: PMC11872924 DOI: 10.3389/fphar.2025.1504618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This study investigates the anticancer properties of key constituents of these plants, focusing on the BK002 formulation, a novel combination of AJN and MFR. Specifically, the research employs advanced molecular docking and in silico analyses to assess the interactions of bioactive compounds ecdysterone, inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1, and PD-L1. Molecular docking techniques were applied to evaluate the binding affinities contributions of the bioactive compounds in BK002 against prostate cancer-hub network targets. The primary focus was on enzymes like 5α-reductase and CYP17, which are central to androgen biosynthesis, as well as on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on data from prostate cancer patients, key target networks were identified, followed by in silico analysis of the primary bioactive components of BK002.In silico assessments were conducted to evaluate the safety profiles of these compounds, providing insights into their therapeutic potential. The docking studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec demonstrated strong binding affinities to the critical prostate cancer-related enzymes 5α-reductase and CYP17, contributing to a potential reduction in androgenic activity. These compounds also exhibited significant inhibitory interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to interfere with key oncogenic and immune evasion pathways. Ecdysterone, inokosterone, and 20-hydroxyecdysone have demonstrated the ability to target key oncogenic pathways, and their favorable binding affinity profiles further underscore their potential as novel therapeutic agents for prostate cancer. These findings provide a strong rationale for further preclinical and clinical investigations, supporting the integration of BK002 into therapeutic regimens aimed at modulating tumor progression and immune responses.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Estéfani Alves Asevedo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | | | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kaltsas A, Markou E, Kyrgiafini MA, Zikopoulos A, Symeonidis EN, Dimitriadis F, Zachariou A, Sofikitis N, Chrisofos M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes (Basel) 2025; 16:93. [PMID: 39858640 PMCID: PMC11765119 DOI: 10.3390/genes16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility. This disruption extends to epigenetic modifications, resulting in abnormal gene expression and chromatin remodeling that compromise genomic integrity and fertilization potential. Importantly, oxidative-stress-induced epigenetic alterations can be inherited, affecting the health and fertility of offspring and future generations. This review investigates how oxidative stress influences epigenetic regulation in male reproduction by modifying DNA methylation, histone modifications, and non-coding RNAs, ultimately compromising spermatogenesis. Additionally, it discusses the transgenerational implications of these epigenetic disruptions and their potential role in hereditary infertility and disease predisposition. Understanding these mechanisms is vital for developing therapeutic strategies that mitigate oxidative damage and restore epigenetic homeostasis in the male germline. By integrating insights from molecular, clinical, and transgenerational research, this work emphasizes the need for targeted interventions to enhance male reproductive health and prevent adverse outcomes in progeny. Furthermore, elucidating the dose-response relationships between oxidative stress and epigenetic changes remains a critical research priority, informing personalized diagnostics and therapeutic interventions. In this context, future studies should adopt standardized markers of oxidative damage, robust clinical trials, and multi-omic approaches to capture the complexity of epigenetic regulation in spermatogenesis. Such rigorous investigations will ultimately reduce the risk of transgenerational disorders and optimize reproductive health outcomes.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, UK;
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
9
|
Cheng H, Wu J, Peng H, Li J, Liu Z, Wang X, Zhang K, Xie L. Epigenetic Modulation with 5-Aza-CdR Prevents Metabolic-Associated Fatty Liver Disease Promoted by Maternal Overnutrition. Nutrients 2024; 17:106. [PMID: 39796540 PMCID: PMC11722594 DOI: 10.3390/nu17010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition. METHODS The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks. These mice were randomly divided into two groups: HFD, and AZA + HFD. Mice assigned to the AZA group were given 5-Aza-CdR during the last three weeks. RESULTS Our findings show that 5-Aza-CdR treatment in HFD-fed offspring effectively countered weight gain, improved glucose regulation, and minimized hepatic fat buildup along with serum lipid imbalances. Additionally, it boosted AMPK signaling and raised PPAR-α expression, pointing to enhanced fatty acid oxidation. We also detected an increase in JNK signaling, affecting the gene expression associated with cell death and proliferation. Notably, treated mice displayed more hepatic inflammation than the HFD group alone, suggesting a complex, dual impact on MAFLD management. Significant apoptotic and inflammatory gene changes were identified, along with corresponding differentially methylated regions triggered by 5-Aza-CdR, marking potential therapeutic targets. CONCLUSIONS 5-Aza-CdR was shown to mitigate MAFLD features in offspring of maternal overnutrition by reversing DNA hypermethylation and improving metabolic pathways, though its dual impact on inflammation highlights the need for further research to optimize its therapeutic potential.
Collapse
Affiliation(s)
- Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Jie Wu
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
| | - Hui Peng
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Jiangyuan Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| |
Collapse
|
10
|
Jeeva P, Muthusamy A, Kesavan swaminathan J. Deciphering Structural Dynamics of Atherosclerosis Proteins: Insights from Crataegus oxyacantha Phytochemicals that Interceded Functional and Structural Changes in Targeted Atherosclerotic Proteins. ACS OMEGA 2024; 9:48159-48172. [PMID: 39676950 PMCID: PMC11635474 DOI: 10.1021/acsomega.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 12/17/2024]
Abstract
Atherosclerosis (ASC) is characterized by foam cell-mediated plaque formation, vascular endothelial inflammation, and lipidosis and is the rudimentary cause of cardiovascular diseases. This is the pre-eminent global factor of mortality. This etiological paradigm is significantly influenced by several proteins, where 23 pivotal proteins involved in ASC were meticulously gleaned on the basis of literature studies. The crux of the present study was aimed to probe the drugability of four active phytochemicals from Crataegus oxyacantha (COC): epicatechin, gallate, tyramine, and vitexin against the selected 23 proteins. The molecular docking analysis was judiciously administered via Glide, the binding free energy was calculated in detail utilizing the prime molecular mechanics-generalized Born surface area (MM-GBSA) module, and a deeper comprehensive investigation of protein-ligand dynamic associations was elucidated through Desmond. Drawing from the upper echelons of our docking results, the molecular dynamics simulation outcomes revealed that the macrophage migration inhibitory factor and prethrombin-1 showed persistent binding nature with gallate. The bioactive compound known as gallate sourced from COC shows the best molecular association with pivotal proteins involved in ASC and has a promising therapeutic potential for drug development endeavors.
Collapse
Affiliation(s)
- Praveen Jeeva
- Department
of Bioinformatics, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Anusuyadevi Muthusamy
- Department
of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | | |
Collapse
|
11
|
Bellavia D, Caruccio S, Caradonna F, Costa V, Urzì O, Raimondi L, De Luca A, Pagani S, Naselli F, Giavaresi G. Enzymatic TET-1 inhibition highlights different epigenetic behaviours of IL-1β and TNFα in tumour progression of OS cell lines. Clin Epigenetics 2024; 16:136. [PMID: 39358792 PMCID: PMC11448002 DOI: 10.1186/s13148-024-01745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumour, whose heterogeneity represents a major challenge for common antitumour therapies. Inflammatory cytokines are known to be necessary for OS progression. Therefore, to optimise therapy, it is important to discover reliable biomarkers by identifying the mechanism generating OS and investigating the inflammatory pathways that support the undifferentiated state. In this work, we highlight the differences of epigenetic activities of IL-1β and TNFα, and the susceptibility of TET-1 enzymatic inhibition, in tumour progression of three different OS cell lines. Investigating DNA methylation of IL-6 promoter and determining its expression, we found that TET enzymatic inhibition influences proliferation induced by inflammatory cytokines in OS cell lines. Moreover, Bobcat 339 treatment blocks IL-1β epigenetic action on IL-6 promoter, while only partially those of TNFα as well as inhibits IL-1β-dependent epithelial-mesenchymal transition (EMT) process, but only partially those of TNFα. In conclusion, this work highlights that IL-1β and TNFα have different effects on DNA demethylation in OS cell lines, making DNA methylation a potential biomarker of disease. Specifically, in IL-1β treatment, TET-1 inhibition completely blocks tumour progression, while in TNFα actions, it is only partially effective. Given that these two inflammatory pathways can be therapeutic targets for treating these tumours, knowledge of their distinct epigenetic behaviours can be useful for developing precise and specific therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Daniele Bellavia
- SC Scienze E Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche Per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Salvatore Caruccio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Viviana Costa
- SC Scienze E Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche Per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Ornella Urzì
- . Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Lavinia Raimondi
- SC Scienze E Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche Per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angela De Luca
- SC Scienze E Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche Per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Pagani
- SC Scienze E Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche Per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, Palermo, Italy
| | - Gianluca Giavaresi
- SC Scienze E Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche Per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
12
|
Bordoni L, Petracci I, Feliziani G, de Simone G, Rucci C, Gabbianelli R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1061. [PMID: 39334721 PMCID: PMC11428692 DOI: 10.3390/antiox13091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Trimethylamine (TMA), a byproduct of gut microbiota metabolism from dietary precursors, is not only the precursor of trimethylamine-N-oxide (TMAO) but may also affect gut health. An in vitro model of intestinal epithelium of Caco-2 cells was used to evaluate the impact of TMA on inflammation, paracellular permeability, epigenetics and mitochondrial functions. The expression levels of pro-inflammatory cytokines (IL-6, IL-1β) increased significantly after 24 h exposure to TMA 1 mM. TMA exposure was associated with an upregulation of SIRT1 (TMA 1 mM, 400 μM, 10 μM) and DNMT1 (TMA 1 mM, 400 µM) genes, while DNMT3A expression decreased (TMA 1 mM). In a cell-free model, TMA (from 0.1 µM to 1 mM) induced a dose-dependent reduction in Sirtuin enzyme activity. In Caco-2 cells, TMA reduced total ATP levels and significantly downregulated ND6 expression (TMA 1 mM). TMA excess (1 mM) reduced intracellular mitochondrial DNA copy numbers and increased the methylation of the light-strand promoter in the D-loop area of mtDNA. Also, TMA (1 mM, 400 µM, 10 µM) increased the permeability of Caco-2 epithelium, as evidenced by the reduced transepithelial electrical resistance values. Based on our preliminary results, TMA excess might promote inflammation in intestinal cells and disturb epigenetic and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Irene Petracci
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| | - Giulia Feliziani
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Gaia de Simone
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Chiara Rucci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy and Health Products, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
13
|
Cai Y, Li L, Shao C, Chen Y, Wang Z. Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics. J Cardiovasc Transl Res 2024; 17:816-827. [PMID: 38294628 DOI: 10.1007/s12265-024-10485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strategies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing new directions and opportunities for disease treatment.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Yiliu Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
14
|
Butt DQ, Harun MH, Che Jalil NA, Shamsuddin SH, Jaafar S, Ahmad B. Protumorigenic Interferon-Stimulated Genes in Cancer: A Comprehensive Review. Cureus 2024; 16:e63216. [PMID: 39070493 PMCID: PMC11279184 DOI: 10.7759/cureus.63216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Interferon-stimulated genes (ISGs), whose production is triggered by interferons, are known to defend the host from pathogenic and cancer-specific antigens, one of which is by inducing apoptosis in infected or mutated cells. It has been reported recently that specific ISGs aid cancer cells in evading immunosurveillance and inflammatory cells by inhibiting the apoptosis process. This report reviewed four apoptosis-regulating ISG proteins: interferon-stimulated gene 15 (ISG15), interferon alpha-inducible protein 27 (IFI27), interferon alpha-inducible protein 6 (IFI6), and radical S-adenosyl methionine domain containing 2 (RSAD2), demonstrating anti-apoptosis function, and considered them protumorigenic.
Collapse
Affiliation(s)
- Danial Qasim Butt
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Masitah Hayati Harun
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Nur Asyilla Che Jalil
- Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | | | - Saidi Jaafar
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Basaruddin Ahmad
- Biostatistics Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
15
|
Bashi MA, Ad'hiah AH. Molecular landscape of the interleukin-40 encoding gene, C17orf99, in patients with acute myeloid leukemia. Gene 2024; 904:148214. [PMID: 38286266 DOI: 10.1016/j.gene.2024.148214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant hematological disorder in which aberrant cytokine signaling and inflammation play a role in disease initiation and progression. Interleukin-40 (IL-40) is a novel cytokine encoded by the chromosome 17 open reading frame 99 (C17orf99) gene. This cytokine is involved in mediating inflammation but its biological significance in the pathogenesis of AML has not been investigated. In this case-control and observational study, mRNA expression and DNA methylation of the C17orf99 gene were evaluated in the peripheral blood of AML patients. In addition, the polymorphism of two novel intergenic variants of the C17orf99 gene, rs2004339 A/G and rs2310998 G/A, were explored using a real-time polymerase chain reaction assay. The study was conducted on 131 patients with AML and 106 controls and gene expression and DNA methylation were expressed as fold-change (2-ΔΔCt). Results revealed that mRNA expression of the C17orf99 gene was down-regulated in AML patients, particularly in females, while up-regulated expression was found in patients with hypoalbuminemia. For DNA methylation, it was up-regulated in AML patients, particularly in females, AML M5 subtype, and CD4-negative and CD14-positive peripheral blood cells. The mutant A allele and the corresponding homozygous AA genotype of rs2004339 was significantly associated with an increased risk of AML. The AA genotype was also associated with significantly up-regulated C17orf99 mRNA expression and DNA methylation of compared to the wild-type GG genotype. In conclusions, C17orf99 mRNA expression showed down-regulated levels in the peripheral blood of AML patients, while DNA methylation was up-regulated. The intergenic variant rs2004339 was associated with susceptibility to AML and had an effect on mRNA expression and DNA methylation.
Collapse
Affiliation(s)
- Mustafa A Bashi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
16
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
17
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
18
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
19
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
20
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Moore LL, Houchen CW. Epigenetic Landscape and Therapeutic Implication of Gene Isoforms of Doublecortin-Like Kinase 1 for Cancer Stem Cells. Int J Mol Sci 2023; 24:16407. [PMID: 38003596 PMCID: PMC10671580 DOI: 10.3390/ijms242216407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While significant strides have been made in understanding cancer biology, the enhancement in patient survival is limited, underscoring the urgency for innovative strategies. Epigenetic modifications characterized by hereditary shifts in gene expression without changes to the DNA sequence play a critical role in producing alternative gene isoforms. When these processes go awry, they influence cancer onset, growth, spread, and cancer stemness. In this review, we delve into the epigenetic and isoform nuances of the protein kinase, doublecortin-like kinase 1 (DCLK1). Recognized as a hallmark of tumor stemness, DCLK1 plays a pivotal role in tumorigenesis, and DCLK1 isoforms, shaped by alternative promoter usage and splicing, can reveal potential therapeutic touchpoints. Our discussion centers on recent findings pertaining to the specific functions of DCLK1 isoforms and the prevailing understanding of its epigenetic regulation via its two distinct promoters. It is noteworthy that all DCLK1 isoforms retain their kinase domain, suggesting that their unique functionalities arise from non-kinase mechanisms. Consequently, our research has pivoted to drugs that specifically influence the epigenetic generation of these DCLK1 isoforms. We posit that a combined therapeutic approach, harnessing both the epigenetic regulators of specific DCLK1 isoforms and DCLK1-targeted drugs, may prove more effective than therapies that solely target DCLK1.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Yan J, Yang Y, Lu J, Yuan Y, Wu X, Huang J, Zhang S. Identification of TMEM178 as a Potential Prognostic Biomarker and Therapeutic Target for Breast Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2427-2439. [PMID: 38106832 PMCID: PMC10719715 DOI: 10.18502/ijph.v52i11.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/08/2023] [Indexed: 12/19/2023]
Abstract
Background The transmembrane protein (TMEM) family plays important roles in cancer. However, the expression pattern and biological roles of TMEM178, a member of TMEM family, remains unclear in breast cancer (BRCA). Methods Methylation and RNA-seq data were obtained to explore methylation level. Expression of TMEM178, methylation inhibitor 5-Aza-CdR was used to verify the effect of methylation status on the expression of TMEM178. We comprehensively investigated the prognostic outcomes, biological functions and effects on immune cell infiltration of the TMEM178 in BRCA using multiple bioinformatics methods. Results The expression of TMEM178 was downregulated and negatively correlated with the level of DNA methylation and DNA methyltransferase (DNMT1, DNMT3A, and DNMT3B) in BRCA. Consistently, TMEM178 mRNA were confirmed to be downregulated, while upregulated in response to treatment with methylation inhibitor 5-Aza-CdR by RT-qPCR. Patients with high expression of TMEM178 have better prognosis and are more sensitive to targeted drug Pazopanib. Immune infiltration analysis showed that the infiltration levels of CD4+ T cell subsets were reduced in BRAC tissues with high TMEM178 expression, and immunosuppressive molecules of T-cell exhaustion were lower expression level. Conclusion Hypermethylation of the TMEM178 promoter region was a contributing factor to the downregulation of its expression, and TMEM178 may reflect a prognostic and immunosuppressive situation in BRCA.
Collapse
Affiliation(s)
- Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jingrun Lu
- Department of Clinical Laboratory, The First People’s Hospital of Guiyang, Guiyang, 550002, China
| | - Yan Yuan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Xiangyi Wu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jian Huang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
23
|
Tsuji A, Yoshikawa S, Morikawa S, Ikeda Y, Taniguchi K, Sawamura H, Asai T, Matsuda S. Potential tactics with vitamin D and certain phytochemicals for enhancing the effectiveness of immune-checkpoint blockade therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:460-473. [PMID: 37455830 PMCID: PMC10344894 DOI: 10.37349/etat.2023.00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy strategies targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) are revolutionizing oncology. However, its effectiveness is limited in part due to the loss of effector cytotoxic T lymphocytes. Interestingly, supplementation of vitamin D could abolish the repressive effect of programmed cell death-ligand 1 (PD-L1) on CD8+ T cells, which might prevent the lymphocytopenia. In addition, vitamin D signaling could contribute to the differentiation of T-regulatory (Treg) cells associated with the expression of Treg markers such as forkhead box P3 (FOXP3) and CTLA-4. Furthermore, vitamin D may be associated with the stimulation of innate immunity. Peroxisome proliferator-activated receptor (PPAR) and estrogen receptor (ESR) signaling, and even the signaling from phosphoinositide-3 kinase (PI3K)/AKT pathway could have inhibitory roles in carcinogenesis possibly via the modulation of immune checkpoint molecules. In some cases, certain small molecules including vitamin D could be a novel therapeutic modality with a promising potential for the better performance of immune checkpoint blockade cancer therapies.
Collapse
Affiliation(s)
- Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Sae Morikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
24
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
25
|
Uchendu I, Zhilenkova A, Pirogova Y, Basova M, Bagmet L, Kohanovskaia I, Ngaha Y, Ikebunwa O, Sekacheva M. Cytokines as Potential Therapeutic Targets and their Role in the Diagnosis and Prediction of Cancers. Curr Pharm Des 2023; 29:2552-2567. [PMID: 37916493 DOI: 10.2174/0113816128268111231024054240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The death rate from cancer is declining as a result of earlier identification and more advanced treatments. Nevertheless, a number of unfavourable adverse effects, including prolonged, long-lasting inflammation and reduced immune function, usually coexist with anti-cancer therapies and lead to a general decline in quality of life. Improvements in standardized comprehensive therapy and early identification of a variety of aggressive tumors remain the main objectives of cancer research. Tumor markers in those with cancer are tumor- associated proteins that are clinically significant. Even while several tumor markers are routinely used, they don't always provide reliable diagnostic information. Serum cytokines are promising markers of tumor stage, prognosis, and responsiveness to therapy. In fact, several cytokines are currently proposed as potential biomarkers in a variety of cancers. It has actually been proposed that the study of circulatory cytokines together with biomarkers that are particular to cancer can enhance and accelerate cancer diagnosis and prediction, particularly via blood samples that require minimal to the absence of invasion. The purpose of this review was to critically examine relevant primary research literature in order to elucidate the role and importance of a few identified serum cytokines as prospective therapeutic targets in oncological diseases.
Collapse
Affiliation(s)
- Ikenna Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Angelina Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yuliya Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Maria Basova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Leonid Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Iana Kohanovskaia
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yvan Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Obinna Ikebunwa
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
- Department of Biotechnology, First Moscow State Medical University of The Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Marina Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
26
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
27
|
Abstract
Gallbladder cancer (GBC) is the most common cancer of the biliary tract, characterized by a very poor prognosis when diagnosed at advanced stages owing to its aggressive behaviour and limited therapeutic options. Early detection at a curable stage remains challenging because patients rarely exhibit symptoms; indeed, most GBCs are discovered incidentally following cholecystectomy for symptomatic gallbladder stones. Long-standing chronic inflammation is an important driver of GBC, regardless of the lithiasic or non-lithiasic origin. Advances in omics technologies have provided a deeper understanding of GBC pathogenesis, uncovering mechanisms associated with inflammation-driven tumour initiation and progression. Surgical resection is the only treatment with curative intent for GBC but very few cases are suitable for resection and most adjuvant therapy has a very low response rate. Several unmet clinical needs require to be addressed to improve GBC management, including discovery and validation of reliable biomarkers for screening, therapy selection and prognosis. Standardization of preneoplastic and neoplastic lesion nomenclature, as well as surgical specimen processing and sampling, now provides reproducible and comparable research data that provide a basis for identifying and implementing early detection strategies and improving drug discovery. Advances in the understanding of next-generation sequencing, multidisciplinary care for GBC, neoadjuvant and adjuvant strategies, and novel systemic therapies including chemotherapy and immunotherapies are gradually changing the treatment paradigm and prognosis of this recalcitrant cancer.
Collapse
Affiliation(s)
- Juan C Roa
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Patricia García
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinay K Kapoor
- Department of Hepato-pancreato-biliary (HPB) Surgery, Mahatma Gandhi Medical College & Hospital (MGMCH), Jaipur, India
| | - Shishir K Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
28
|
Wang M, Bi C, Li H, Lu L, Gao T, Huang P, Liu C, Wang B. The emerging double-edged sword role of Sirtuins in the gastric inflammation-carcinoma sequence revealed by bulk and single-cell transcriptomes. Front Oncol 2022; 12:1004726. [PMID: 36324577 PMCID: PMC9619065 DOI: 10.3389/fonc.2022.1004726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Histone modification and the inflammation-carcinoma sequence (ICS) have been acknowledgedly implicated in gastric carcinogenesis. However, the extremum expression of some histone modification genes (HMGs) in intestinal metaplasia (IM) rather than GC obscures the roles of HMGs in ICS. In this study, we assumed an explanation that the roles of HMGs in ICS were stage specific. Bulk RNA-seq on endoscopy biopsy samples from a total of 50 patients was accompanied by reanalysis of a set of published single-cell transcriptomes, which cross-sectionally profiled the transcriptomic features of chronic superficial gastritis (SG), atrophy gastritis (AG), IM, and early gastric cancer (GC). Differential analysis observed significantly peaked expression of SIRT6 and SIRT7 at IM. Weighted correlation network analysis on bulk transcriptome recognized significant correlations between SIRT1/6 and IM. The single-cell atlas identified one subgroup of B cells expressing high level of TFF1 (TFF1hi naive B cell) that theoretically played important roles in defending microbial infection, while SIRT6 displayed a positive correlation with TFF1low naive B cells. Moreover, gene set enrichment analysis at different lesions (SG-AG, AG-IM, and IM-GC) highlighted that gene sets contributing to IM, e.g., Brush Border, were largely enriched from co-expressing genes of Sirtuins (SIRTs) in AG-IM. Surveys of the genes negatively correlated with SIRT6 in public databases considered SIRT6 as tumor suppressors, which was confirmed by the cell proliferation and migration assays after transient transfection of SIRT6 overexpression vector into AGS cells. All the above observations were then confirmed by serial section-based immunohistochemistry against Ki-67, MUC2, MUC5AC, p53, and SIRT6 on the endoscopic submucosal dissection tissue. By contrast, the expression of the other HMGs varied even opposite within same family. Taken together, this study preliminarily demonstrated the two-edged sword role of SIRTs in ICS and, by extension, showed that the roles of HMGs in ICS were probably stage specific. Our study may provide new insights into and attract attention on gastric prevention and therapy targeting HMGs.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Chenxiao Bi
- Department of Immunology, Binzhou Medical University, Yantai, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Hong Li
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Lizhen Lu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Tao Gao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Panpan Huang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Chengxia Liu, ; Bin Wang,
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
- *Correspondence: Chengxia Liu, ; Bin Wang,
| |
Collapse
|
29
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|