1
|
Xu P, Sun X, Pan L, Zhu J, Qian S. Disulfidptosis-related LncRNAs forecast the prognosis of acute myeloid leukemia. Sci Rep 2025; 15:13635. [PMID: 40254646 PMCID: PMC12009979 DOI: 10.1038/s41598-025-95607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a poor prognosis for patients. Disulfidptosis response-related long non-coding RNAs (DRLs) have been demonstrated to be closely associated with cancer development. Therefore, this study aims to construct a prognostic DRL signature and investigate the immune microenvironment for AML. RNA-seq and clinical data for AML patients were obtained from The Cancer Genome Atlas (TCGA) database. A total of 344 disulfidptosis-associated lncRNAs were identified, and a prognostic model consisting of seven lncRNAs was constructed and validated. Two risk groups, high-risk and low-risk, were identified. The model demonstrated a robust capacity to predict prognosis, with a worse overall survival for patients in the high-risk group. Additionally, differential expression of the seven lncRNAs were relatively higher in AML samples than in control samples via quantitative polymerase chain reaction(qPCR). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and immune infiltration analysis revealed a substantial infiltration of immune cells and enrichment of immune pathways in the high-risk group. The sensitivity of AML patients to drugs varied according to their risk grade. This study identified a DRL signature, which can effectively predict the prognosis of AML and better understand the mechanism of disulfidptosis in AML. This provides a basis for personalized immunotherapy in AML patients.
Collapse
Affiliation(s)
- Pei Xu
- Department of Hematology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Xiaolin Sun
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Lingxiao Pan
- Department of Hematology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jianfeng Zhu
- Department of Hematology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Sixuan Qian
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
| |
Collapse
|
2
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
4
|
Hu R, Liao P, Xu B, Qiu Y, Zhang H, Li Y. N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Ann Hematol 2024; 103:2601-2612. [PMID: 37548690 DOI: 10.1007/s00277-023-05302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 08/08/2023]
Abstract
N6-methyladenosine (m6A) RNA modification has recently emerged as an essential regulator of normal and malignant hematopoiesis. As a reversible epigenetic modification found in messenger RNAs and non-coding RNAs, m6A affects the fate of the modified RNA molecules. It is essential in most vital bioprocesses, contributing to cancer development. Here, we review the up-to-date knowledge of the pathological functions and underlying molecular mechanism of m6A modifications in normal hematopoiesis, leukemia pathogenesis, and drug response/resistance. At last, we discuss the critical role of m6A in immune response, the therapeutic potential of targeting m6A regulators, and the possible combination therapy for AML.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Epigenesis, Genetic
- Hematopoiesis/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Molecular Targeted Therapy
- Animals
- Drug Resistance, Neoplasm/genetics
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Ge F, Wang Y, Sharma A, Jaehde U, Essler M, Schmid M, Schmidt-Wolf IGH. Computational analysis of heat shock proteins and ferroptosis-associated lncRNAs to predict prognosis in acute myeloid leukemia patients. Front Genet 2023; 14:1218276. [PMID: 37600655 PMCID: PMC10436091 DOI: 10.3389/fgene.2023.1218276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Owing to their functional diversity in many cancers, long noncoding RNAs (lncRNAs) are receiving special attention. LncRNAs not only function as oncogenes or tumor suppressors by participating in various signaling pathways but also serve as predictive markers for various types of cancer, including acute myeloid leukemia (AML). Considering this, we investigated lncRNAs that may act as a mediator between two processes, i.e., heat shock proteins and ferroptosis, which appear to be closely related in tumorigenesis. Using a comprehensive bioinformatics approach, we identified four lncRNAs (AL138716.1, AC000120.1, AC004947.1, and LINC01547) with prognostic value in AML patients. Of interest, two of them (AC000120.1 and LINC01547) have already been reported to be AML-related, and AC004947.1 is considered to have oncogenic potential. In particular, the signature obtained showed a lower survival probability with high-risk patients, and vice versa. To our knowledge, this is the first predictive model of lncRNA that may correlate with the processes of heat shock proteins and ferroptosis in AML. Nevertheless, validation using patient samples is warranted.
Collapse
Affiliation(s)
- Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zhu Y, He J, Li Z, Yang W. Cuproptosis-related lncRNA signature for prognostic prediction in patients with acute myeloid leukemia. BMC Bioinformatics 2023; 24:37. [PMID: 36737692 PMCID: PMC9896718 DOI: 10.1186/s12859-023-05148-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been reported to have a crucial impact on the pathogenesis of acute myeloid leukemia (AML). Cuproptosis, a copper-triggered modality of mitochondrial cell death, might serve as a promising therapeutic target for cancer treatment and clinical outcome prediction. Nevertheless, the role of cuproptosis-related lncRNAs in AML is not fully understood. METHODS The RNA sequencing data and demographic characteristics of AML patients were downloaded from The Cancer Genome Atlas database. Pearson correlation analysis, the least absolute shrinkage and selection operator algorithm, and univariable and multivariable Cox regression analyses were applied to identify the cuproptosis-related lncRNA signature and determine its feasibility for AML prognosis prediction. The performance of the proposed signature was evaluated via Kaplan-Meier survival analysis, receiver operating characteristic curves, and principal component analysis. Functional analysis was implemented to uncover the potential prognostic mechanisms. Additionally, quantitative real-time PCR (qRT-PCR) was employed to validate the expression of the prognostic lncRNAs in AML samples. RESULTS A signature consisting of seven cuproptosis-related lncRNAs (namely NFE4, LINC00989, LINC02062, AC006460.2, AL353796.1, PSMB8-AS1, and AC000120.1) was proposed. Multivariable cox regression analysis revealed that the proposed signature was an independent prognostic factor for AML. Notably, the nomogram based on this signature showed excellent accuracy in predicting the 1-, 3-, and 5-year survival (area under curve = 0.846, 0.801, and 0.895, respectively). Functional analysis results suggested the existence of a significant association between the prognostic signature and immune-related pathways. The expression pattern of the lncRNAs was validated in AML samples. CONCLUSION Collectively, we constructed a prediction model based on seven cuproptosis-related lncRNAs for AML prognosis. The obtained risk score may reveal the immunotherapy response in patients with this disease.
Collapse
Affiliation(s)
- Yidong Zhu
- grid.412538.90000 0004 0527 0050Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Jun He
- grid.412538.90000 0004 0527 0050Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,grid.412538.90000 0004 0527 0050Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Zihua Li
- grid.412538.90000 0004 0527 0050Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,grid.412538.90000 0004 0527 0050Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Wenzhong Yang
- Department of Hematology, Shanghai Punan Hosptial of Pudong New District, Shanghai, 200125, China.
| |
Collapse
|
8
|
Li D, Fan X, Zuo L, Wu X, Wu Y, Zhang Y, Zou F, Sun Z, Zhang W. Prognostic analysis of RAS-related lncRNAs in liver hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1356. [PMID: 36660710 PMCID: PMC9843414 DOI: 10.21037/atm-22-5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Background Liver hepatocellular carcinoma (LIHC), whose incidence is increasing globally, is one of the most prevalent malignant cancers. RAS-related pathways are involved in the cell proliferation, migration, apoptosis, and metabolism in LIHC. Long noncoding RNAs (lncRNAs) also play important roles in the progression and prognosis of LIHC. However, the clinical role, prognostic significance, and immune regulation of RAS-related lncRNAs in LIHC remains unclear. Our study aims to construct and validate a RAS-related lncRNA prognostic risk signature that can estimate the prognosis and response to immunotherapy in LIHC. Methods The clinical information and corresponding messenger RNA (mRNA)/lncRNA expression profiles were obtained from The Cancer Genome Atlas (TCGA) database, and 502 RAS-related lncRNAs were identified by Pearson correlation analysis. A prognostic risk signature with 5 RAS-related lncRNAs was then developed based on the Cox regression and least absolute shrinkage and selection operator (LASSO) algorithm analyses. Subsequently, Kaplan-Meier survival curve, receiver operating characteristic (ROC) curve, and the nomogram were established to evaluate the predictive accuracy of the signature. In addition, the immune microenvironment, tumor mutation burden, and drug sensitivity associated with the signature were also analyzed in LIHC. Results Compared with the low-risk groups, the high-risk groups had an unfavorable outcome. Multivariate regression analysis revealed that the risk score signature was the independent prognostic factor superior to the other clinical variables. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses demonstrated that the risk score was highly associated with the nuclear division, DNA replication, and immune response. The group with high risk tended to hold a lower immune escape rate and better immunotherapy efficacy, while the group with low risk was more sensitive to some small molecular targeted drugs. Conclusions We developed a RAS-related lncRNA risk signature that was highly associated with the prognosis and response to immunotherapy and targeted drugs and which provided novel mechanistic insights into the personalized treatment and potential drug selection for patients with LIHC.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Fan
- Department of Hematology, Zhengzhou Third People's Hospital, Zhengzhou, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yingxi Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yuanyuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanmei Zou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Li D, Wu X, Fan X, Cheng C, Li D, Zhang W. Comprehensive analysis of cuproptosis-related lncRNAs in the prognosis and therapy response of patients with bladder cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1232. [PMID: 36544685 PMCID: PMC9761144 DOI: 10.21037/atm-22-5294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Background Cuproptosis is the recently defined regulatory cell death (RCD) that plays essential roles in tumorigenesis and progression. Long noncoding RNAs (lncRNAs) regulate the gene expression through various means. However, the clinical value of cuproptosis-related lncRNAs in bladder cancer (BLCA) remains poorly described. Methods We downloaded the transcriptome sequencing data and clinical information from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and lasso Cox regression analyses were performed to construct the prognostic risk signature, the predictive accuracy of which was validated in the subsequent independence and stratification analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore the underlying molecular mechanisms involved in the signature to explore therapeutic vulnerabilities and potential targets in BLCA. Tumor mutational burden (TMB) and tumor immune dysfunction and exclusion (TIDE) were used to estimate the response to immune checkpoint inhibitors (ICIs). We further explored the potential new drug-target candidates based on the half maximal inhibitory concentration for this patient population. Results Fifteen cuproptosis-related lncRNAs significantly associated with survival were identified to construct the risk signature based on the normalized expression level and regression coefficient of each gene. The patients with BLCA and high-risk scores defined by the signature were associated with worse survival outcomes. The differentially expressed genes (DEGs) between the 2 risk groups had different biological activity. Furthermore, the patients in the low-risk group exhibited a higher TMB index and a lower TIDE score. The sensitivity of multiple antitumor drugs was negatively related to risk score, including AR-42, AS605240, FK866, TAK-715, and tubastatin A, while the sensitivity of some antitumor drugs, such as AMG-706, BX-795, and RO-3306, were positively correlated with risk score. Conclusions Our study established and verified a novel clinical risk signature with cuproptosis-related lncRNAs that may predict therapy response and prognosis with robust and stable accuracy in patients with BLCA and enhance the personalized management of this patient population.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Fan
- Department of Hematology, Zhengzhou Third People’s Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Dongbei Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Li D, Wu X, Song W, Cheng C, Hao L, Zhang W. Clinical significance and immune landscape of cuproptosis-related lncRNAs in kidney renal clear cell carcinoma: a bioinformatical analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1235. [PMID: 36544675 PMCID: PMC9761138 DOI: 10.21037/atm-22-5204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is considered an immunogenic tumor. Cuproptosis is a newly identified copper-induced regulated cell death that relies on mitochondria respiration. Long noncoding RNAs (lncRNAs) have emerged as significant players in tumorigenesis and metastasis. However, there is a huge knowledge gap on the prognostic role of cuproptosis-related lncRNAs in KIRC. And, the clinical value of them is still unknown. Here, we aimed to develop a cuproptosis-related lncRNA prognostic signature in KIRC. Methods The messenger RNA (mRNA)/lncRNA expression profiles and the clinical information including age, gender, tumor stage, grade, and overall survival (OS) were acquired from The Cancer Genome Atlas (TCGA) database. The included KIRC samples were further randomly assigned into training (n=258) or testing (n=257) data sets. We performed Pearson correlation analysis to identify the cuproptosis-related lncRNAs and then constructed the prognostic signature using Cox regression analysis and LASSO algorithm. Subsequently, Kaplan-Meier survival analysis, a nomogram, and receiver operating characteristic (ROC) curve were performed to assess the predictive performance of the signature. Moreover, the immune characteristics and drug sensitivity related to the signature were also explored. Results The signature comprised 7 cuproptosis-related lncRNAs. The patients with a low-risk score had superior OS compared with those with a high-risk score. The survival rates of the high- and low-risk groups were 44.96% and 83.72% (P<0.001). The area under the curve (AUC) value for 1-, 3-, 5-year survival rate reached 0.814, 0.762 and 0.825, respectively. In addition, a nomogram was also generated; the AUC was 0.785 for risk score, higher than that for age (0.593), gender (0.489), grade (0.679), and stage (0.721). The high-risk group had more enriched immune- and tumor-related genes. Patients with low-risk scores were more sensitive to immunotherapy and the small molecular drugs GSK1904529A, tipifarnib, BX-912, FR-180204, and GSK1070916. Meanwhile, the high-risk group tended to be more sensitive to pyrimethamine, MS-275, and CGP-60474. Conclusions Collectively, we constructed a cuproptosis-related lncRNA prognostic signature with a higher predictive accuracy compared to multiple clinicopathological parameters, which may provide vital guidance for therapeutic strategies in KIRC. Combination of more prognostic biomarkers may further improve the accuracy.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lidan Hao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China;,Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China;,Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Li P, Li J, Wen F, Cao Y, Luo Z, Zuo J, Wu F, Li Z, Li W, Wang F. A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for acute myeloid leukemia. Front Oncol 2022; 12:966920. [PMID: 36276132 PMCID: PMC9585311 DOI: 10.3389/fonc.2022.966920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cuproptosis is a type of programmed cell death that is involved in multiple physiological and pathological processes, including cancer. We constructed a prognostic cuproptosis-related long non-coding RNA (lncRNA) signature for acute myeloid leukemia (AML). Methods RNA-seq and clinical data for AML patients were acquired from The Cancer Genome Atlas (TCGA) database. The cuproptosis-related prognostic lncRNAs were identified by co-expression and univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) was performed to construct a cuproptosis-related lncRNA signature, after which the AML patients were classified into two risk groups based on the risk model. Kaplan-Meier, ROC, univariate and multivariate Cox regression, nomogram, and calibration curves analyses were used to evaluate the prognostic value of the model. Then, expression levels of the lncRNAs in the signature were investigated in AML samples by quantitative polymerase chain reaction (qPCR). KEGG functional analysis, single-sample GSEA (ssGSEA), and the ESTIMATE algorithm were used to analyze the mechanisms and immune status between the different risk groups. The sensitivities for potential therapeutic drugs for AML were also investigated. Results Five hundred and three lncRNAs related to 19 CRGs in AML samples from the TCGA database were obtained, and 21 differentially expressed lncRNAs were identified based on the 2-year overall survival (OS) outcomes of AML patients. A 4-cuproptosis-related lncRNA signature for survival was constructed by LASSO Cox regression. High-risk AML patients exhibited worse outcomes. Univariate and multivariate Cox regression analyses demonstrated the independent prognostic value of the model. ROC, nomogram, and calibration curves analyses revealed the predictive power of the signature. KEGG pathway and ssGSEA analyses showed that the high-risk group had higher immune activities. Lastly, AML patients from different risk groups showed differential responses to various agents. Conclusion A cuproptosis-related lncRNA signature was established to predict the prognosis and inform on potential therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Pian Li
- The First Affiliated Hospital, Department of Oncology Radiotherapy, Hengyang Medical School, University of South China, Hengyang, China
| | - Junjun Li
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Feng Wen
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yixiong Cao
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zeyu Luo
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Zuo
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Fei Wu
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiqin Li
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenlu Li
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Fujue Wang
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Fujue Wang,
| |
Collapse
|
12
|
Ouyang X, Gong Y. One Stone, Two Birds: N6-Methyladenosine RNA Modification in Leukemia Stem Cells and the Tumor Immune Microenvironment in Acute Myeloid Leukemia. Front Immunol 2022; 13:912526. [PMID: 35720276 PMCID: PMC9201081 DOI: 10.3389/fimmu.2022.912526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, with accumulation of abundant blasts and impairment of hematogenic function. Despite great advances in diagnosis and therapy, the overall survival of patients with acute myeloid leukemia remains poor. Leukemia stem cells are the root cause of relapse and chemoresistance in acute myeloid leukemia. The tumor immune microenvironment is another trigger to induce recurrence and drug resistance. Understanding the underlying factors influencing leukemia stem cells and the tumor immune microenvironment is an urgent and unmet need. Intriguingly, N6-methyladenosine, the most widespread internal mRNA modification in eukaryotes, is found to regulate both leukemia stem cells and the tumor immune microenvironment. Methyltransferases and demethylases cooperatively make N6-methyladenosine modification reversible and dynamic. Increasing evidence demonstrates that N6-methyladenosine modification extensively participates in tumorigenesis and progression in various cancers, including acute myeloid leukemia. In this review, we summarize the current progress in studies on the functions of N6-methyladenosine modification in acute myeloid leukemia, especially in leukemia stem cells and the tumor immune microenvironment. We generalize the landscape of N6-methyladenosine modification in self-renewal of leukemia stem cells and immune microenvironment regulation, as well as in the initiation, growth, proliferation, differentiation, and apoptosis of leukemia cells. In addition, we further explore the clinical application of N6-methyladenosine modification in diagnosis, prognostic stratification, and effect evaluation. Considering the roles of N6-methyladenosine modification in leukemia stem cells and the tumor immune microenvironment, we propose targeting N6-methyladenosine regulators as one stone to kill two birds for acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- Xianfeng Ouyang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.,Department of Hematology, Jiujiang First People's Hospital, Jiujiang, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Li D, Liang J, Zhang W, Wu X, Fan J. A Distinct Glucose Metabolism Signature of Lung Adenocarcinoma With Prognostic Value. Front Genet 2022; 13:860677. [PMID: 35615380 PMCID: PMC9125243 DOI: 10.3389/fgene.2022.860677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) remains the most common type of lung cancer and is the main cause of cancer-related death worldwide. Reprogramming of glucose metabolism plays a crucial role in tumorigenesis and progression. However, the regulation of glucose metabolism is still being explored in LUAD. Determining the underlying clinical value of glucose metabolism will contribute in increasing clinical interventions. Our study aimed to conduct a comprehensive analysis of the landscape of glucose metabolism-related genes in LUAD and develop a prognostic risk signature. Methods: We extracted the RNA-seq data and relevant clinical variants from The Cancer Genome Atlas (TCGA) database and identified glucose metabolism-related genes associated with the outcome by correlation analysis. To generate a prognostic signature, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed. Results: Finally, ten genes with expression status were identified to generate the risk signature, including FBP2, ADH6, DHDH, PRKCB, INPP5J, ABAT, HK2, GNPNAT1, PLCB3, and ACAT2. Survival analysis indicated that the patients in the high-risk group had a worse survival than those in the low-risk group, which is consistent with the results in validated cohorts. And receiver operating characteristic (ROC) curve analysis further validated the prognostic value and predictive performance of the signature. In addition, the two risk groups had significantly different clinicopathological characteristics and immune cell infiltration status. Notably, the low-risk group is more likely to respond to immunotherapy. Conclusion: Overall, this study systematically explored the prognostic value of glucose metabolism and generated a prognostic risk signature with favorable efficacy and accuracy, which help select candidate patients and explore potential therapeutic approaches targeting the reprogrammed glucose metabolism in LUAD.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiaming Liang
- Department of Internal Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jie Fan, ; Xuan Wu,
| | - Jie Fan
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Jie Fan, ; Xuan Wu,
| |
Collapse
|
14
|
Zheng G, Liu M, Chang X, Cao X, Dong A, Zhu H, Hu W, Xie J, Zhao Y, Hu D, Jia X, Yang Y, Shi X, Lu J. Comprehensive Analysis of N6-Methyladenosine-Related Long Noncoding RNA Prognosis of Acute Myeloid Leukemia and Immune Cell Infiltration. Front Genet 2022; 13:888173. [PMID: 35601490 PMCID: PMC9115802 DOI: 10.3389/fgene.2022.888173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
N6-Methyladenosine-related long noncoding RNAs play an essential role in many cancers’ development. However, the relationship between m6A-related lncRNAs and acute myelogenous leukemia (AML) prognosis remains unclear. We systematically analyzed the association of m6A-related lncRNAs with the prognosis and tumor immune microenvironment (TME) features using the therapeutically applicable research to generate effective treatment (TARGET) database. We screened 315 lncRNAs associated with AML prognosis and identified nine key lncRNAs associated with m6A by the LASSO Cox analysis. A model was established based on these nine lncRNAs and the predictive power was explored in The Cancer Genome Atlas (TCGA) database. The areas under the ROC curve of TARGET and TCGA databases for ROC at 1, 3, and 5 years are 0.701, 0.704, and 0.696, and 0.587, 0.639, and 0.685, respectively. The nomogram and decision curve analysis (DCA) showed that the risk score was more accurate than other clinical indicators in evaluating patients’ prognoses. The clusters with a better prognosis enrich the AML pathways and immune-related pathways. We also found a close correlation between prognostic m6A-related lncRNAs and tumor immune cell infiltration. LAG3 expression at the immune checkpoint was lower in the worse prognostic cluster. In conclusion, m6A-related lncRNAs partly affected AML prognosis by remodeling the TME and affecting the anticarcinogenic ability of immune checkpoints, especially LAG3 inhibitors. The prognostic model constructed with nine key m6A-related lncRNAs can provide a method to assess the prognosis of AML patients in both adults and children.
Collapse
Affiliation(s)
- Guowei Zheng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengying Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinyu Chang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiting Cao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ani Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huili Zhu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wanli Hu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junna Xie
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jie Lu, ; Xuezhong Shi,
| | - Jie Lu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jie Lu, ; Xuezhong Shi,
| |
Collapse
|