1
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
2
|
Tang SN, Salazar-Puerta AI, Heimann MK, Kuchynsky K, Rincon-Benavides MA, Kordowski M, Gunsch G, Bodine L, Diop K, Gantt C, Khan S, Bratasz A, Kokiko-Cochran O, Fitzgerald J, Laudier DM, Hoyland JA, Walter BA, Higuita-Castro N, Purmessur D. Engineered extracellular vesicle-based gene therapy for the treatment of discogenic back pain. Biomaterials 2024; 308:122562. [PMID: 38583365 PMCID: PMC11164054 DOI: 10.1016/j.biomaterials.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/23/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.
Collapse
Affiliation(s)
- Shirley N Tang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA
| | - Mary K Heimann
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA
| | - Kyle Kuchynsky
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA
| | | | - Mia Kordowski
- Biophysics Graduate Program, The Ohio State University, USA
| | - Gilian Gunsch
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA
| | - Lucy Bodine
- Department of Mechanical Engineering, College of Engineering, The Ohio State University, USA
| | - Khady Diop
- Department of Biology, College of Arts and Sciences, The Ohio State University, USA
| | - Connor Gantt
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA
| | - Safdar Khan
- Department of Orthopedics, The Ohio State University Wexner Medical Center, USA
| | - Anna Bratasz
- Small Animal Imaging Center Shared Resources, Wexner Medical Center, USA
| | - Olga Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, USA; Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, USA; Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, USA
| | - Damien M Laudier
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, USA
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK; NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Benjamin A Walter
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA; Department of Orthopedics, The Ohio State University Wexner Medical Center, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA; Biophysics Graduate Program, The Ohio State University, USA; Department of Neurosurgery, The Ohio State University, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, USA.
| | - Devina Purmessur
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, USA; Department of Orthopedics, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
3
|
Yang X, Zhang S, Lu J, Chen X, Zheng T, He R, Ye C, Xu J. Therapeutic potential of mesenchymal stem cell-derived exosomes in skeletal diseases. Front Mol Biosci 2024; 11:1268019. [PMID: 38903180 PMCID: PMC11187108 DOI: 10.3389/fmolb.2024.1268019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Skeletal diseases impose a considerable burden on society. The clinical and tissue-engineering therapies applied to alleviate such diseases frequently result in complications and are inadequately effective. Research has shifted from conventional therapies based on mesenchymal stem cells (MSCs) to exosomes derived from MSCs. Exosomes are natural nanocarriers of endogenous DNA, RNA, proteins, and lipids and have a low immune clearance rate and good barrier penetration and allow targeted delivery of therapeutics. MSC-derived exosomes (MSC-exosomes) have the characteristics of both MSCs and exosomes, and so they can have both immunosuppressive and tissue-regenerative effects. Despite advances in our knowledge of MSC-exosomes, their regulatory mechanisms and functionalities are unclear. Here we review the therapeutic potential of MSC-exosomes for skeletal diseases.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Xiaoling Chen
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Tian Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Tang J, Wang X, Lin X, Wu C. Mesenchymal stem cell-derived extracellular vesicles: a regulator and carrier for targeting bone-related diseases. Cell Death Discov 2024; 10:212. [PMID: 38697996 PMCID: PMC11066013 DOI: 10.1038/s41420-024-01973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The escalating threat of bone-related diseases poses a significant challenge to human health. Mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs), as inherent cell-secreted natural products, have emerged as promising treatments for bone-related diseases. Leveraging outstanding features such as high biocompatibility, low immunogenicity, superior biological barrier penetration, and extended circulating half-life, MSC-EVs serve as potent carriers for microRNAs (miRNAs), long no-code RNAs (lncRNAs), and other biomolecules. These cargo molecules play pivotal roles in orchestrating bone metabolism and vascularity through diverse mechanisms, thereby contributing to the amelioration of bone diseases. Additionally, engineering modifications enhance the bone-targeting ability of MSC-EVs, mitigating systemic side effects and bolstering their clinical translational potential. This review comprehensively explores the mechanisms through which MSC-EVs regulate bone-related disease progression. It delves into the therapeutic potential of MSC-EVs as adept drug carriers, augmented by engineered modification strategies tailored for osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and osteosarcoma. In conclusion, the exceptional promise exhibited by MSC-EVs positions them as an excellent solution with considerable translational applications in clinical orthopedics.
Collapse
Affiliation(s)
- Jiandong Tang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xiangyu Wang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xu Lin
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Chao Wu
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China.
| |
Collapse
|
5
|
Tilotta V, Vadalà G, Ambrosio L, Di Giacomo G, Cicione C, Russo F, Darinskas A, Papalia R, Denaro V. Wharton's Jelly mesenchymal stromal cell-derived extracellular vesicles promote nucleus pulposus cell anabolism in an in vitro 3D alginate-bead culture model. JOR Spine 2024; 7:e1274. [PMID: 38222813 PMCID: PMC10782051 DOI: 10.1002/jsp2.1274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intradiscal transplantation of mesenchymal stromal cells (MSCs) has emerged as a promising therapy for intervertebral disc degeneration (IDD). However, the hostile microenvironment of the intervertebral disc (IVD) may compromise the survival of implanted cells. Interestingly, studies reported that paracrine factors, such as extracellular vesicles (EVs) released by MSCs, may regenerate the IVD. The aim of this study was to investigate the therapeutic effects of Wharton's Jelly MSC (WJ-MSC)-derived EVs on human nucleus pulposus cells (hNPCs) using an in vitro 3D alginate-bead culture model. Methods After EV isolation and characterization, hNPCs isolated from surgical specimens were encapsulated in alginate beads and treated with 10, 50, and 100 μg/mL WJ-MSC-EVs. Cell proliferation and viability were assessed by flow cytometry and live/dead staining. Nitrite and glycosaminoglycan (GAG) content was evaluated through Griess and 1,9-dimethylmethylene blue assays. hNPCs in alginate beads were paraffin-embedded and stained for histological analysis (hematoxylin-eosin and Alcian blue) to assess extracellular matrix (ECM) composition. Gene expression levels of catabolic (MMP1, MMP13, ADAMTS5, IL6, NOS2), anabolic (ACAN), and hNPC marker (SOX9, KRT19) genes were analyzed through qPCR. Collagen type I and type II content was assessed with Western blot analysis. Results Treatment with WJ-MSC-EVs resulted in an increase in cell content and a decrease in cell death in degenerated hNPCs. Nitrite production was drastically reduced by EV treatment compared to the control. Furthermore, proteoglycan content was enhanced and confirmed by Alcian blue histological staining. EV stimulation attenuated ECM degradation and inflammation by suppressing catabolic and inflammatory gene expression levels. Additionally, NPC phenotypic marker genes were also maintained by the EV treatment. Conclusions WJ-MSC-derived EVs ameliorated hNPC growth and viability, and attenuated ECM degradation and oxidative stress, offering new opportunities for IVD regeneration as an attractive alternative strategy to cell therapy, which may be jeopardized by the harsh microenvironment of the IVD.
Collapse
Affiliation(s)
- Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Adas Darinskas
- Laboratory of Immunology, National Cancer InstituteVilniusLithuania
- JSC Innovita Research, Tissue BankVilniusLithuania
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| |
Collapse
|
6
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
7
|
Yao M, Wu T, Wang B. Research trends and hotspots of mesenchymal stromal cells in intervertebral disc degeneration: a scientometric analysis. EFORT Open Rev 2023; 8:135-147. [PMID: 36916744 PMCID: PMC10026060 DOI: 10.1530/eor-22-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are important potential candidates for regenerative therapy for intervertebral disc degeneration (IDD). This scientometric study aimed to summarize the main research trends, identify current research hotspots, and measure the networks of the contributors and their scientific productivity. A total of 1102 publications regarding MSC in IDD were recognized from January 2000 to April 2022. The number of records every year followed an overall uptrend with fluctuations. The main trend of research demonstrated the practice of gradually applying MSC-based therapy to IDD with the assistance of advances in biomaterials and IDD pathology. A recent focus on MSC-derived exosomes and notochordal cells was detected. The basic studies in this field were mainly contributed to by Japan, the USA, and European countries, while China dominated in the number of recent publications. Tokai University with Daisuke Sakai was the most productive contributor. Cell biology, tissue engineering, and biomaterials were the categories with deep engagement in research of this field.
Collapse
Affiliation(s)
- Minghe Yao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ma M, Cui G, Liu Y, Tang Y, Lu X, Yue C, Zhang X. Mesenchymal stem cell-derived extracellular vesicles, osteoimmunology and orthopedic diseases. PeerJ 2023; 11:e14677. [PMID: 36710868 PMCID: PMC9881470 DOI: 10.7717/peerj.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue healing and regenerative medicine due to their self-renewal and multi-directional differentiation properties. MSCs exert their therapeutic effects mainly via the paracrine pathway, which involves the secretion of extracellular vesicles (EVs). EVs have a high drug loading capacity and can transport various molecules, such as proteins, nucleic acids, and lipids, that can modify the course of diverse diseases. Due to their ability to maintain the therapeutic effects of their parent cells, MSC-derived EVs have emerged as a promising, safe cell-free treatment approach for tissue regeneration. With advances in inflammation research and emergence of the field of osteoimmunology, evidence has accumulated pointing to the role of inflammatory and osteoimmunological processes in the occurrence and progression of orthopedic diseases. Several studies have shown that MSC-derived EVs participate in bone regeneration and the pathophysiology of orthopedic diseases by regulating the inflammatory environment, enhancing angiogenesis, and promoting the differentiation and proliferation of osteoblasts and osteoclasts. In this review, we summarize recent advances in the application and functions of MSC-derived EVs as potential therapies against orthopedic diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Guofeng Cui
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Yanfeng Tang
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Xiaoshuai Lu
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Chen Yue
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Xue Zhang
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| |
Collapse
|
9
|
Bhujel B, Shin HE, Choi DJ, Han I. Mesenchymal Stem Cell-Derived Exosomes and Intervertebral Disc Regeneration: Review. Int J Mol Sci 2022; 23:7306. [PMID: 35806304 PMCID: PMC9267028 DOI: 10.3390/ijms23137306] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of lower back pain (LBP), which burdens individuals and society as a whole. IVDD occurs as a result of aging, mechanical trauma, lifestyle factors, and certain genetic abnormalities, leads to loss of nucleus pulposus, alteration in the composition of the extracellular matrix, excessive oxidative stress, and inflammation in the intervertebral disc. Pharmacological and surgical interventions are considered a boon for the treatment of IVDD, but the effectiveness of those strategies is limited. Mesenchymal stem cells (MSCs) have recently emerged as a possible promising regenerative therapy for IVDD due to their paracrine effect, restoration of the degenerated cells, and capacity for differentiation into disc cells. Recent investigations have shown that the pleiotropic effect of MSCs is not related to differentiation capacity but is mediated by the secretion of soluble paracrine factors. Early studies have demonstrated that MSC-derived exosomes have therapeutic potential for treating IVDD by promoting cell proliferation, tissue regeneration, modulation of the inflammatory response, and reduced apoptosis. This paper highlights the current state of MSC-derived exosomes in the field of treatment of IVDD with further possible future developments, applications, and challenges.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Hae-Eun Shin
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam-si 13496, Korea; (B.B.); (H.-E.S.)
| | - Dong-Jun Choi
- Department of Medicine, CHA Univerity School of Medicine, Seongnam-si 13496, Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| |
Collapse
|