1
|
Fu M, Zhou H, Yang J, Cao D, Yuan Z. Infiltration of CD8 + cytotoxic T-cells and expression of PD-1 and PD-L1 in ovarian clear cell carcinoma. Sci Rep 2025; 15:4716. [PMID: 39922892 PMCID: PMC11807128 DOI: 10.1038/s41598-025-89270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is resistant to chemotherapy, with limited treatment options for advanced and recurrent disease. The prevalence of OCCC differs by region. Assessing the expression of programmed cell death ligand 1 (PD-L1), PD-1, and CD8+T cell infiltration in OCCC is crucial, as their correlation with patient survival may provide valuable prognostic insights. We collected data from 36 samples from 18 OCCC patients, including 18 pairs of tumors and adjacent nonneoplastic samples. The optimized multiplex immunofluorescence technique was used to stain paraffin sections for immune factors related to the immune microenvironment of OCCC and clinical prognosis. The expression of PDL1 and PD1 in the tumor cells and tumor stromal cells was not significantly correlated with prognosis. Professional quantitative pathological analysis software was used to count the CD8+ cytotoxic T-cells in tumor regions and adjacent nonneoplastic regions in postoperative specimens. There were more CD8+ cytotoxic T-cells in the adjacent nonneoplastic areas than in the tumor tissue samples (p < 0.001). Further analysis revealed that a difference in cell density between CD8+ non-tumor-infiltrating lymphocytes (NTILs) and CD8+ tumor-infiltrating lymphocytes (TILs) exceeding 70 cells/mm2 was associated with poorer progression-free survival (PFS) (p = 0.042). In adjacent nonneoplastic regions, worse PFS was significantly observed in patients with high CD8+ T-cell expression in both total and stromal cells than those with low expression (p = 0.012 vs p = 0.007). The presence of CD8+ T-cells had significant potential for predicting the prognosis of patients with OCCC, which lays a foundation for the development of biomarkers for immune checkpoint blockade treatment response in OCCC patients.
Collapse
Affiliation(s)
- Mengdi Fu
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Zhen Yuan
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
2
|
Zhou SQ, Feng P, Ye ML, Huang SY, He SW, Zhu XH, Chen J, Zhang Q, Li YQ. The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation. J Exp Clin Cancer Res 2024; 43:14. [PMID: 38191501 PMCID: PMC10775674 DOI: 10.1186/s13046-024-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Shi-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, People's Republic of China.
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
3
|
Phetphoung T, Malla A, Rattanapisit K, Pisuttinusart N, Damrongyot N, Joyjamras K, Chanvorachote P, Phakham T, Wongtangprasert T, Strasser R, Chaotham C, Phoolcharoen W. Expression of plant-produced anti-PD-L1 antibody with anoikis sensitizing activity in human lung cancer cells via., suppression on epithelial-mesenchymal transition. PLoS One 2022; 17:e0274737. [PMID: 36367857 PMCID: PMC9651560 DOI: 10.1371/journal.pone.0274737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint antibodies in cancer treatment are receptor-ligand pairs that modulate cancer immunity. PD-1/PD-L1 pathway has emerged as one of the major targets in cancer immunotherapy. Atezolizumab, the first anti-PD-L1 antibody approved for the treatment of metastatic urothelial, non-small cell lung, small cell lung and triple-negative breast cancers, is produced in Chinese Hamster Ovary (CHO) cells with several limitations i.e., high-production costs, low-capacity yields, and contamination risks. Due to the rapid scalability and low production costs, the transient expression in Nicotiana benthamiana leaves was investigated by co-infiltration of Agrobacterium tumefaciens GV3101 cultures harboring the nucleic acid sequences encoding for Atezolizumab heavy chain and light chain in this study. The transient expression of Atezolizumab in transformed N. benthamiana accumulated up to 86.76 μg/g fresh leaf weight after 6 days of agroinfiltration (OD 600 nm: 0.4) with 1:1 ratio of heavy chain to light chain. The structural and functional characteristics of plant-produced Atezolizumab was compared with commercially available Tecentriq® from CHO cells with similar binding efficacies to PD-L1 receptor. The direct anti-cancer effect of plant-produced anti-PD-L1 was further performed in human lung metastatic cancer cells H460 cultured under detachment condition, demonstrating the activity of anti-PD-L1-antibody on sensitizing anoikis as well as the suppression on anti-apoptosis proteins (Bcl-2 and Mcl-1) and modulation of epithelial to mesenchymal regulating proteins (E-cadherin, N-cadherin, Snail and Slug). In conclusion, this study manifests plants as an alternative cost-effective platform for the production of functional monoclonal antibodies for use in cancer therapy.
Collapse
Affiliation(s)
- Thareeya Phetphoung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Nuttapat Pisuttinusart
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naruechai Damrongyot
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Pharmacology and Toxicology Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathum Thani, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| |
Collapse
|