1
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Tu SM, Trikannad AK, Vellanki S, Hussain M, Malik N, Singh SR, Jillella A, Obulareddy S, Malapati S, Bhatti SA, Arnaoutakis K, Atiq OT. Stem Cell Origin of Cancer: Clinical Implications beyond Immunotherapy for Drug versus Therapy Development in Cancer Care. Cancers (Basel) 2024; 16:1151. [PMID: 38539487 PMCID: PMC10969562 DOI: 10.3390/cancers16061151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Although immunotherapy has revolutionized cancer care, there is still an urgent need to enhance its efficacy and ensure its safety. A correct cancer theory and proper scientific method empower pertinent cancer research and enable effective and efficient drug versus therapy development for patient care. In this perspective, we revisit the concept of immune privilege in a cancer cell versus normal cell, as well as in a cancer stem cell versus normal stem cell. We re-examine whether effective immunotherapies are efficacious due to their anti-cancer and/or immune modulatory mechanisms. We reassess why checkpoint inhibitors (CPIs) are not equal. We reconsider whether one can attribute the utility of immunotherapy to specific cancer subtypes and its futility to certain tumor/immune compartments, components, and microenvironments. We propose ways and means to advance immunotherapy beyond CPIs by combining anti-PD1/L1 with various other treatment modalities according to an appropriate scientific theory, e.g., stem cell origin of cancer, and based on available clinical evidence, e.g., randomized clinical trials. We predict that a stem cell theory of cancer will facilitate the design of better and safer immunotherapy with improved selection of its use for the right patient with the right cancer type at the right time to optimize clinical benefits and minimize potential toxic effects and complications.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (M.H.); (N.M.); (S.R.S.); (A.J.); (S.O.); (S.M.); (S.A.B.); (K.A.); (O.T.A.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|