1
|
Rahaman SH, Bodhak S, Balla VK, Bhattacharya D. Role of in-situ electrical stimulation on early-stage mineralization and in-vitro osteogenesis of electroactive bioactive glass composites. BIOMATERIALS ADVANCES 2025; 166:214062. [PMID: 39406157 DOI: 10.1016/j.bioadv.2024.214062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024]
Abstract
Bioactive glass (BAG) has emerged as an effective bone graft substitute due to its diverse qualities of biocompatibility, bioactivity, osteoblast adhesion and enhanced revascularization. However, inferior osteogenic capacity of BAG compared to autologous bone grafts continues to limiting it's wide-spread clinical applications towards repairing of bone fractures and healing. In this study, we have fabricated BAG composites with 0.5 to 2 wt% bismuth ferrite (BF, a multiferroic material) with an aim to generate in-situ electrical charges pertinent to early-stage bone regeneration thus mimicking natural bone, which is a piezoelectric material. The fabricated BAG composites were characterised in terms of microstructures, phase analysis, remanent polarization, wettability and subsequently evaluated for in vitro cell proliferation and osteogenesis with and without magnetic field exposure (200 mT, 30 min./day). Pre-osteoblast cells from mice (MC3T3-E1) seeded on these composites exhibited excellent cell growth without any cytotoxicity, which is further supported by FITC/DAPI staining and a live/dead assay. The results of Alizarin Red S assay and increased levels of Alkaline Phosphatase (ALP) activity, at 21 days of culture, suggest that the BAG-BF composites promote in vitro osteogenic differentiation of pre-osteoblast cells. The enhanced osteogenesis of BAG-BF composites was also confirmed through qRT-PCR analysis, which showed rapid upregulation of osteoblastogenic specific genes namely RunX-2, Collagen-1, Bone Sialo Protein, and ALP after 21 days. Additionally, the osteogenic differentiation was assessed by the Western Blot technique, which revealed significantly higher band intensity of osteogenic markers in BAG-1.5 BF and BAG-2 BF composites than pure BAG. These findings clearly demonstrate that in-situ electrical stimulation and osteoconductive capacity of BF reinforced BAG composites have positive impact on osteoblast cell development, bone formation, and healing.
Collapse
Affiliation(s)
- Sk Hasanur Rahaman
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Bodhak
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vamsi Krishna Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dipten Bhattacharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
2
|
Yang J, Dong H, Yang J, Yu H, Zou G, Peng J. miR-16a-5p antagonizes FGF-2 in ligamentogenic differentiation of MSC: a new therapeutic perspective for tendon regeneration. Sci Rep 2024; 14:23717. [PMID: 39390042 PMCID: PMC11479607 DOI: 10.1038/s41598-024-74385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
With the increasing demand for exercise, the population of patients with ankle sprain to anterior talofibular ligament injury has the characteristics of a large base and high requirements for returning to sports, and how to promote the repair of damaged ligaments from a microscopic perspective is an urgent problem to be solved. In many studies, human amniotic mesenchymal stem cells have strong differentiation ability, and can be induced to continuously differentiate into ligament cells to achieve the purpose of repairing damaged ligaments. Human amniotic stem cells were extracted and cultured from human amniotic tissues, evaluated by cell identification and other techniques, and evaluated into ligament differentiation by toluidine blue, alizarin red, oil red O staining and detection of ligament cell differentiation, protein detection by Western blot, mRNA level by qPCR, and finally, the targeted binding relationship between miR-16a-5p and mRNA FGF2 was verified by double luciferase reporter assay. The expression of collagen type 1 (COL 1), collagen type 3 (COL3), SCX and MKX was increased by overexpression of mRNA FGF2, respectively, and miR-16a-5p had a targeted effect on FGF2 and regulated the ligamentous differentiation of human amniotic mesenchymal stem cells. We found that the regulatory effect of overexpressed mRNA FGF2 on mesenchymal stem cells could be inhibited by up-regulation of miR-16a-5p, while the knockdown of FGF2 could reverse the regulatory effect of miR-16a-5p inhibition on ligament-forming differentiation of human amniotic mesenchymal stem cells. In this study, we discovered the existence of the miR-16a-5p-FGF2 axis in human amniotic mesenchymal stem cells, and the differentiation of human amniotic mesenchymal stem cells into ligamentous cells can be regulated by regulating various links in this axis.
Collapse
Affiliation(s)
- Jibin Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Jin Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Hao Yu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Gang Zou
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China
| | - Jiachen Peng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Guizhou, 563003, China.
| |
Collapse
|
3
|
Yuan W, Huang M, Wu Y, Liu J, Zhou X, Wang J, Liu J. Agaricus blazei Murrill Polysaccharide Attenuates Periodontitis via H 2 S/NRF2 Axis-Boosted Appropriate Level of Autophagy in PDLCs. Mol Nutr Food Res 2023; 67:e2300112. [PMID: 37775336 DOI: 10.1002/mnfr.202300112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Indexed: 10/01/2023]
Abstract
SCOPE Periodontitis is one of the most prevalent chronic inflammatory diseases with impaired autophagy. Agaricus blazei Murrill polysaccharide (ABMP) shows beneficial effects in various inflammatory diseases. However, whether ABMP is involved in autophagy regulation and periodontitis attenuation remains to be elucidated. METHODS AND RESULTS This study firstly shows the dynamic changes in inflammatory and autophagy levels in silk ligature periodontitis model. Then the positive regulation effect of autophagy on inflammation and its vital role in ABMP inhibiting PDLCs inflammatory response are testified in LPS-treated PDLCs. Secondly, the Micro-CT, quantitative RT-PCR, Western Blot, TRAP, and immunofluorescence staining analysis are performed to assess the effects of ABMP on periodontitis and autophagy. The data show the augmented autophagy and alleviated gingival recession, inflammatory cell infiltration, alveolar bone resorption, and reduced osteoclasts in periodontitis by ABMP treatment. Further experiments using chemical inhibitors demonstrate the vital role of H2 S/NRF2 axis in ABMP-induced appropriate level of autophagy augmentation against periodontitis. CONCLUSIONS Collectively, the findings not only reveal the unrecognized capacity and mechanism of ABMP as an effective and potential dietary intake against periodontitis, but also suggest the possibility for ABMP to be used in the treatment of other autophagy-related diseases.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Yange Wu
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaqi Liu
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xueman Zhou
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jin Liu
- Lab of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, 610041, Chengdu, China
| |
Collapse
|
4
|
Xing Y, Liu C, Zhou L, Li Y, Wu D. Osteogenic effects of rapamycin on bone marrow mesenchymal stem cells via inducing autophagy. J Orthop Surg Res 2023; 18:129. [PMID: 36814286 PMCID: PMC9945701 DOI: 10.1186/s13018-023-03616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND While autophagy is essential for stem cells' self-renewal and differentiation, its effect on bone marrow mesenchymal stem cells (BMSCs) remains unclear. This study aimed to investigate the interaction between autophagy and osteogenic differentiation using rapamycin (RAPA), a classical autophagy agonist with osteo-regulatory effects. METHODS Rat BMSC's autophagy was analyzed after osteoinduction (0, 7, 14, and 21 d) by western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction (RT-qPCR). In addition, we evaluated osteogenic differentiation using alizarin red staining, alkaline phosphatase assays, and RT-qPCR/Western blotting quantification of bone sialoprotein, type 1 collagen, alkaline phosphatase, osteopontin, and Runt-related transcription factor 2 mRNA and protein levels. RESULTS The BMSC's basal autophagy level gradually decreased during osteogenic differentiation with a decrease in BECN1 level and the lipidated (LC3-II) to unlipidated (LC3-I) microtubule-associated protein 1 light chain 3 ratio and an increase in the expression of selective autophagic target p62. In contrast, it increased with increasing RAPA concentration. Furthermore, while 2 nM RAPA promoted BMSC osteogenic differentiation on days 7 and 14, 5 nM RAPA inhibited osteogenesis on days 14 and 21. Inhibition of autophagy by the inhibitor 3-methyladenine could impair RAPA's osteogenesis-enhancing effect on BMSCs. CONCLUSIONS The BMSC's basal autophagy level decreased over time during osteogenic differentiation. However, an appropriate RAPA concentration promoted BMSC osteogenic differentiation via autophagy activation.
Collapse
Affiliation(s)
- Yifeng Xing
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chaowei Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin Zhou
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yan Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Carnovali M, Ciavatta ML, Mollo E, Roussis V, Banfi G, Carbone M, Mariotti M. Aerophobin-1 from the Marine Sponge Aplysina aerophoba Modulates Osteogenesis in Zebrafish Larvae. Mar Drugs 2022; 20:md20020135. [PMID: 35200664 PMCID: PMC8880152 DOI: 10.3390/md20020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Longer life expectancy has led to an increase in efforts directed to the discovery of new healing agents for disorders related to aging, such as bone diseases. Harboring an incredible variety of bioactive metabolites, marine organisms are standing out as fruitful sources also in this therapeutic field. On the other hand, the in vivo zebrafish model has proven to be an excellent low-cost screening platform for the fast identification of molecules able to regulate bone development. By using zebrafish larvae as a mineralization model, we have thus evaluated the effects of the crude acetonic extract from the marine sponge Aplysina aerophoba and its bromotyrosine components on bone development. Obtained results led to the selection of aerophobin-1 (1) as a promising candidate for applications in regenerative medicine, paving the way for the development of a novel therapeutic option in osteoporosis treatment.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (M.C.); (G.B.)
| | - Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche—Istituto di Chimica Biomolecolare (CNR-ICB), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.C.); (E.M.)
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche—Istituto di Chimica Biomolecolare (CNR-ICB), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.C.); (E.M.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (M.C.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche—Istituto di Chimica Biomolecolare (CNR-ICB), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.C.); (E.M.)
- Correspondence: (M.C.); (M.M.); Tel.: +39-08-1867-5227 (M.C.); +39-02-9647-4369 (M.M.)
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (M.C.); (G.B.)
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università Degli Studi di Milano, Via della Commenda 10, 20122 Milano, Italy
- Correspondence: (M.C.); (M.M.); Tel.: +39-08-1867-5227 (M.C.); +39-02-9647-4369 (M.M.)
| |
Collapse
|