1
|
Odenkirk MT, Jostes HC, Francis KR, Baker ES. Lipidomics reveals cell specific changes during pluripotent differentiation to neural and mesodermal lineages. Mol Omics 2025. [PMID: 40078081 PMCID: PMC11904469 DOI: 10.1039/d4mo00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells. This, combined with emerging evidence linking lipids to neurodegeneration, cardiovascular health, and other diseases, makes lipids a critical class of analytes to assess normal and abnormal cellular processes. While previous work has examined the lipid composition of stem cells, uncertainties remain about which changes are conserved and which are unique across distinct cell types. In this study, we investigated lipid alterations of induced pluripotent stem cells (iPSCs) at critical stages of differentiation toward neural or mesodermal fates. Lipidomic analyses of distinct differentiation stages were completed using a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations. Results illustrated a shared triacylglyceride and free fatty acid accumulation in early iPSCs that were utilized at different stages of differentiation. Unique fluctuations through differentiation were also observed for certain phospholipid classes, sphingomyelins, and ceramides. These insights into lipid fluctuations across iPSC differentiation enhance our fundamental understanding of lipid metabolism within pluripotent stem cells and during differentiation, while also paving the way for a more precise and effective application of pluripotent stem cells in human disease interventions.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Haley C Jostes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Odenkirk MT, Jostes HC, Francis K, Baker ES. Lipidomics Reveals Cell Specific Changes During Pluripotent Differentiation to Neural and Mesodermal Lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630916. [PMID: 39803501 PMCID: PMC11722439 DOI: 10.1101/2024.12.31.630916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells. This, combined with emerging evidence linking lipids to neurodegeneration, cardiovascular health, and other diseases, makes lipids a critical class of analytes to assess normal and abnormal cellular processes. While previous work has examined the lipid composition of stem cells, uncertainties remain about which changes are conserved and which are unique across distinct cell types. In this study, we investigated lipid alterations of induced pluripotent stem cells (iPSCs) at critical stages of differentiation toward neural or mesodermal fates. Lipdiomic analyses of distinct differentiation stages were completed using a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations. Results illustrated a shared triacylglyceride and free fatty acid accumulation in early iPSCs that were utilized at different stages of differentiation. Unique fluctuations through differentiation were also observed for certain phospholipid classes, sphingomyelins and ceramides. These insights into lipid fluctuations across iPSC differentiation enhance our fundamental understanding of lipid metabolism within pluripotent stem cells and during differentiation, while also paving the way for a more precise and effective application of pluripotent stem cells in human disease interventions.
Collapse
Affiliation(s)
| | - Haley C. Jostes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
Ren C, Zhang S, Ma J, Huang J, Huang P, Qu M, Zhao H, Zhou Z, Gong A. Nicotinamide Mononucleotide Alleviates Bile Acid Metabolism and Hormonal Dysregulation in Letrozole-Induced PCOS Mice. BIOLOGY 2024; 13:1028. [PMID: 39765695 PMCID: PMC11673032 DOI: 10.3390/biology13121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Polycystic ovary syndrome (PCOS) involves complex genetic, metabolic, endocrine, and environmental factors. This study explores the effects of nicotinamide mononucleotide (NMN) in a letrozole-induced PCOS mouse model, focusing on metabolic regulation. Letrozole-induced aromatase inhibition elevated androgen and reduced bile acid levels, linking liver dysfunction and gut imbalance to PCOS. Letrozole-treated mice exhibited disrupted estrous cycles, ovarian congestion, and elevated testosterone. NMN intervention alleviated hyperandrogenism, ovarian abnormalities, and bile acid decline but did not fully restore the estrous cycle or improve lipid profiles. Metabolomic analysis showed that NMN partially reversed bile acid and lipid metabolism disturbances. These findings highlight NMN's protective role in reducing hyperandrogenism and ovarian cyst formation. However, effective PCOS treatment should target liver and gut metabolism, not just ovarian symptoms, to mitigate systemic effects. Bile acid dysregulation may play a key role in PCOS progression and warrants further investigation.
Collapse
Affiliation(s)
- Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shuang Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
| | - Jianyu Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Junjie Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
| | - Mingzi Qu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
| | - Haoyue Zhao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (S.Z.); (J.H.); (P.H.); (M.Q.); (H.Z.); (Z.Z.)
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| |
Collapse
|
4
|
Hernández-Pérez OR, Juárez-Navarro KJ, Diaz NF, Padilla-Camberos E, Beltran-Garcia MJ, Cardenas-Castrejon D, Corona-Perez H, Hernández-Jiménez C, Díaz-Martínez NE. Biomolecules resveratrol + coenzyme Q10 recover the cell state of human mesenchymal stem cells after 1-methyl-4-phenylpyridinium-induced damage and improve proliferation and neural differentiation. Front Neurosci 2022; 16:929590. [PMID: 36117620 PMCID: PMC9471188 DOI: 10.3389/fnins.2022.929590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative disorders are a critical affection with a high incidence around the world. Currently, there are no effective treatments to solve this problem. However, the application of mesenchymal stem cells (MSCs) and antioxidants in neurodegenerative diseases has shown to be a promising tool due to their multiple therapeutic effects. This work aimed to evaluate the effects of a combination of resveratrol (RSV) and coenzyme Q10 (CoQ10) on the proliferation and differentiation of MSC and the protector effects in induced damage. To characterize the MSCs, we performed flow cytometry, protocols of cellular differentiation, and immunocytochemistry analysis. The impact of RSV + CoQ10 in proliferation was evaluated by supplementing 2.5 and 10 μM of RSV + CoQ10 in a cellular kinetic for 14 days. Cell viability and lactate dehydrogenase levels (LDH) were also analyzed. The protective effect of RSV + CoQ10 was assessed by supplementing the treatment to damaged MSCs by 1-methyl-4-phenylpyridinium (MPP+); cellular viability, LDH, and reactive oxygen species (ROS) were evaluated.. MSCs expressed the surface markers CD44, CD73, CD90, and CD105 and showed multipotential ability. The combination of RSV + CoQ10 increased the proliferation potential and cell viability and decreased LDH levels. In addition, it reverted the effect of MPP+-induced damage in MSCs to enhance cell viability and decrease LDH and ROS. Finally, RSV + CoQ10 promoted the differentiation of neural progenitors. The combination of RSV + CoQ10 represents a potential treatment to improve MSCs capacities and protect against neurodegenerative damage.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Karen J. Juárez-Navarro
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Nestor F. Diaz
- Instituto Nacional de Perinatología (INPER), Mexico City, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Miguel J. Beltran-Garcia
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| | | | | | | | - Néstor E. Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
- *Correspondence: Néstor E. Díaz-Martínez,
| |
Collapse
|
5
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|