1
|
Kennedy JC, Vargas SO, Fishman MP, Alesi N, Baek SH, Khabibillin D, Platt CD, Garcia-de-Alba C, Agrawal PB, Carmichael NE, Henderson LA, Wehrman A, Boland S, Walther T, Farese RV, Casey AMH, Manis JP, Collen LV, Lvova M, Barbieri A, Sullivan B, Raby BA. A progranulin variant causing childhood interstitial lung disease responsive to anti-TNF-α biologic therapy. MED 2025; 6:100607. [PMID: 40020677 DOI: 10.1016/j.medj.2025.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Childhood interstitial and diffuse lung diseases are a collection of rare disorders with significant associated morbidity. Only a small subset of these diseases have precise diagnostic or therapeutic options identified to date. METHODS Whole-exome sequencing in a family identified a candidate pathogenic variant predicted to be causing fibrotic lung and liver disease in a child. Digital spatial mRNA profiling of clinical lung biopsies was done to identify aberrant signaling pathways. ELISA confirmed low circulating protein levels in the patient. FINDINGS We identified homozygosity of the p.Cys139Arg loss-of-function progranulin (GRN) variant and an alveolar macrophage transcriptomic signature consistent with tumor necrosis factor alpha (TNF-α) pathway activation. This motivated treatment with anti-TNF monoclonal antibodies, resulting in dramatic improvement of the patient's lung and liver disease. CONCLUSIONS These findings demonstrate the clinical utility of convergent multiomics in the evaluation and implementation of precision therapeutics in rare diseases. FUNDING This work was supported by a grant from the Chan Zuckerberg Initiative Patient-Partnered Collaboration for single-cell analysis of rare inflammatory pediatric disease, the Corkin Family Fund for Research, and in part by cooperative agreement U01TR002623 from the National Center for Advancing Translational Sciences/NIH and the PrecisionLink Project at Boston Children's Hospital.
Collapse
Affiliation(s)
- John C Kennedy
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Sara O Vargas
- Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Martha P Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Nicola Alesi
- Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Seung-Han Baek
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Damir Khabibillin
- Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Craig D Platt
- Harvard Medical School, Boston, MA 02115, USA; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Neonatology, Miller School of Medicine, University of Miami, Coral Gables, FL 33124, USA
| | - Nikkola E Carmichael
- Department of Medical Science and Education, Boston University, Boston, MA 02115, USA
| | - Lauren A Henderson
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Andrew Wehrman
- Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sebastian Boland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Walther
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Robert V Farese
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alicia M H Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - John P Manis
- Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria Lvova
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alessandro Barbieri
- Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Brendan Sullivan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
2
|
Cheong LYT, Saipuljumri EN, Loi GWZ, Zeng J, Lo CH. Autolysosomal Dysfunction in Obesity-induced Metabolic Inflammation and Related Disorders. Curr Obes Rep 2025; 14:43. [PMID: 40366502 PMCID: PMC12078456 DOI: 10.1007/s13679-025-00638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW Obesity is a global health crisis affecting individuals across all age groups, significantly increasing the risk of metabolic disorders such as type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), and cardiovascular diseases. The World Health Organization reported in 2022 that 2.5 billion adults were overweight, with 890 million classified as obese, emphasizing the urgent need for effective interventions. A critical aspect of obesity's pathophysiology is meta-inflammation-a chronic, systemic low-grade inflammatory state driven by excess adipose tissue, which disrupts metabolic homeostasis. This review examines the role of autolysosomal dysfunction in obesity-related metabolic disorders, exploring its impact across multiple metabolic organs and evaluating potential therapeutic strategies that target autophagy and lysosomal function. RECENT FINDINGS Emerging research highlights the importance of autophagy in maintaining cellular homeostasis and metabolic balance. Obesity-induced lysosomal dysfunction impairs the autophagic degradation process, contributing to the accumulation of damaged organelles and toxic aggregates, exacerbating insulin resistance, lipotoxicity, and chronic inflammation. Studies have identified autophagic defects in key metabolic tissues, including adipose tissue, skeletal muscle, liver, pancreas, kidney, heart, and brain, linking autophagy dysregulation to the progression of metabolic diseases. Preclinical investigations suggest that pharmacological and nutritional interventions-such as AMPK activation, caloric restriction mimetics, and lysosomal-targeting compounds-can restore autophagic function and improve metabolic outcomes in obesity models. Autolysosomal dysfunction is a pivotal contributor to obesity-associated metabolic disorders , influencing systemic inflammation and metabolic dysfunction. Restoring autophagy and lysosomal function holds promise as a therapeutic strategy to mitigate obesity-driven pathologies. Future research should focus on translating these findings into clinical applications, optimizing targeted interventions to improve metabolic health and reduce obesity-associated complications.
Collapse
Affiliation(s)
- Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | | | - Gavin Wen Zhao Loi
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
3
|
Baumer Y, Irei J, Boisvert WA. Cholesterol crystals in the pathogenesis of atherosclerosis. Nat Rev Cardiol 2025; 22:315-332. [PMID: 39558130 DOI: 10.1038/s41569-024-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of cholesterol crystals (CCs) in tissues was first described more than 100 years ago. CCs have a pathogenic role in various cardiovascular diseases, including myocardial infarction, aortic aneurysm and, most prominently, atherosclerosis. Although the underlying mechanisms and signalling pathways involved in CC formation are incompletely understood, numerous studies have highlighted the existence of CCs at various stages of atheroma progression. In this Review, we summarize the mechanisms underlying CC formation and the role of CCs in cardiovascular disease. In particular, we explore the established links between lipid metabolism across various cell types and the formation of CCs, with a focus on CC occurrence in the vasculature. We also discuss CC-induced inflammation as one of the pathogenic features of CCs in the atheroma. Finally, we summarize the therapeutic strategies aimed at reducing CC-mediated atherosclerotic burden, including approaches to inhibit CC formation in the vasculature or to mitigate the inflammatory response triggered by CCs. Addressing CC formation might emerge as a crucial component in our broader efforts to combat cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, NIH, NHLBI, Bethesda, MD, USA
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
4
|
Shilatifard A, Ben-Sahra I. Purifying and profiling lysosomes to expand understanding of lysosomal dysfunction-associated diseases. J Clin Invest 2025; 135:e188507. [PMID: 39959975 PMCID: PMC11827833 DOI: 10.1172/jci188507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Lysosome storage dysfunction plays a central role in numerous human diseases, but a lack of appropriate tools has hindered lysosomal content profiling in clinical settings. In this issue of the JCI, Saarela et al. introduce a method called tagless LysoIP that enabled rapid isolation of intact lysosomes from blood and brain cells via immunoprecipitation of the endogenous protein TMEM192. Applied to the neurodegenerative lysosomal storage disorder known as Batten disease (caused by mutations in the CLN3 gene), tagless LysoIP revealed substantial accumulation of glycerophosphodiesters (GPDs) in patient lysosomes. These findings highlight the role of CLN3 in GPD clearance and present an innovative method that will enable biomarker discovery and therapeutic advancement in lysosomal diseases.
Collapse
|
5
|
Wang J, Wang M, Zeng X, Li Y, Lei L, Chen C, Lin X, Fang P, Guo Y, Jiang X, Wang Y, Chen L, Long J. Targeting membrane contact sites to mediate lipid dynamics: innovative cancer therapies. Cell Commun Signal 2025; 23:89. [PMID: 39955542 PMCID: PMC11830217 DOI: 10.1186/s12964-025-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Membrane contact sites (MCS) are specialized regions where organelles are closely interconnected through membrane structures, facilitating the transfer and exchange of ions, lipids, and other molecules. This proximity enables a synergistic regulation of cellular homeostasis and functions. The formation and maintenance of these contact sites are governed by specific proteins that bring organelle membranes into close apposition, thereby enabling functional crosstalk between cellular compartments. In eukaryotic cells, lipids are primarily synthesized and metabolized within distinct organelles and must be transported through MCS to ensure proper cellular function. Consequently, MCS act as pivotal platforms for lipid synthesis and trafficking, particularly in cancer cells and immune cells within the tumor microenvironment, where dynamic alterations are critical for maintaining lipid homeostasis. This article provides a comprehensive analysis of how these cells exploit membrane contact sites to modulate lipid synthesis, metabolism, and transport, with a specific focus on how MCS-mediated lipid dynamics influence tumor progression. We also examine the differences in MCS and associated molecules across various cancer types, exploring novel therapeutic strategies targeting MCS-related lipid metabolism for the development of anticancer drugs, while also addressing the challenges involved.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xueni Zeng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Lingzhi Lei
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xi Lin
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Peiyuan Fang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Lihong Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
6
|
Wu X, Miller JA, Lee BTK, Wang Y, Ruedl C. Reducing microglial lipid load enhances β amyloid phagocytosis in an Alzheimer's disease mouse model. SCIENCE ADVANCES 2025; 11:eadq6038. [PMID: 39908361 PMCID: PMC11797491 DOI: 10.1126/sciadv.adq6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Macrophages accumulate lipid droplets (LDs) under stress and inflammatory conditions. Despite the presence of LD-loaded macrophages in many tissues, including the brain, their contribution to neurodegenerative disorders remains elusive. This study investigated the role of lipid metabolism in Alzheimer's disease (AD) by assessing the contribution of LD-loaded brain macrophages, including microglia and border-associated macrophages (BAMs), in an AD mouse model. Particularly, BAMs and activated CD11c+ microglia localized near β amyloid (Aβ) plaques exhibited a pronounced lipid-associated gene signature and a high LD load. Having observed that elevated intracellular LD content correlated inversely with microglial phagocytic activities, we subsequently inhibited LD formation specifically in CX3CR1+ brain macrophages using an inducible APP-KI/Fit2iΔMφ transgenic mouse model. We demonstrated that reducing LD content in microglia and CX3CR1+ BAMs remarkably improved their phagocytic ability. Furthermore, lowering microglial LDs consistently enhanced their efferocytosis capacities and notably reduced Aβ deposition in the brain parenchyma. Therefore, mitigating LD accumulation in brain macrophages provides perspectives for AD treatment.
Collapse
Affiliation(s)
- Xiaoting Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James Alastair Miller
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bernett Teck Kwong Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Karakosta C, Samiotaki M, Panayotou G, Papaconstantinou D, Moschos MM. Proteomic Changes of Glycolipid Pathways in Age-Related, Diabetic, and Post-Vitrectomy Cataracts. J Clin Med 2024; 13:7287. [PMID: 39685745 DOI: 10.3390/jcm13237287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Alterations in glycolipid and glycosphingolipid pathways lead to compromised cell membranes and may be involved in cataract formation. However, the exact role of glycolipids in lens opacification is not completely understood. The aim of the current study is to investigate proteome complexity and the role of glycolipid and glycosphingolipid pathways in cataract formation. Methods: The anterior capsule and phacoemulsification (phaco) cassette contents were collected during cataract surgery from eleven participants with diabetic cataract (DC), twelve participants with age-related cataract (ARC), and seven participants with post-vitrectomy cataract (PVC). Liquid chromatography-mass spectrometry with data-independent acquisition (DIA) was used for the identification and quantification of proteins. Results: The results of this study revealed that the main significantly differentially expressed pathways in the ARC group compared to the DC and PVC groups in phaco cassette samples included the glycolipid metabolic, glycosphingolipid biosynthetic, and glycosphingolipid metabolic processes, with GLA being among the most significant proteins in the ARC group. Similarly, in the anterior capsule samples, the main significantly differentially expressed pathways in the ARC group compared to the DC and PVC groups were the glycolipid metabolic, glycosphingolipid biosynthetic, and glycosphingolipid metabolic processes, with ST3GAL5 being among the most significant proteins in the ARC group. Conclusion: Glycolipid and glycosphingolipid metabolic processes may be involved in cataract formation. ST3GAL5 may modify the cell-to-cell interaction induced by cell surface sugar chains, leading to the formation and progression of cataract. GLA, associated with the breakdown of glycolipids, may lead to cataract formation when a certain threshold is surpassed, secondary to increased glycolipid metabolism.
Collapse
Affiliation(s)
- Christina Karakosta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece
| | - Dimitrios Papaconstantinou
- 1st University Eye Clinic, "G. Gennimatas" General Hospital of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Marilita M Moschos
- Department of Electrophysiology of Vision, 1st University Eye Clinic of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Rubilar JC, Outeiro TF, Klein AD. The lysosomal β-glucocerebrosidase strikes mitochondria: implications for Parkinson's therapeutics. Brain 2024; 147:2610-2620. [PMID: 38437875 DOI: 10.1093/brain/awae070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Collapse
Affiliation(s)
- Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37073, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
9
|
Prencipe F, Barzan C, Savian C, Spalluto G, Carosati E, De Amici M, Mosconi G, Gianferrara T, Federico S, Da Ros T. Gaucher Disease: A Glance from a Medicinal Chemistry Perspective. ChemMedChem 2024; 19:e202300641. [PMID: 38329692 DOI: 10.1002/cmdc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.
Collapse
Affiliation(s)
- Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Barzan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Molecular Genetics Institute, CNR Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Savian
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Emanuele Carosati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milano Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Giorgio Mosconi
- Fidia Farmaceutici Via Ponte della Fabbrica 3/A, 35021, Abano Terme, Italy
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
10
|
Bozdag D, van Voorthuizen J, Korpel N, Lentz S, Gurer-Orhan H, Kamstra JH. Dysregulation of adipogenesis and disrupted lipid metabolism by the antidepressants citalopram and sertraline. Toxicol Appl Pharmacol 2024; 486:116937. [PMID: 38643950 DOI: 10.1016/j.taap.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 'obesogens' is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we investigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind SSRIs' effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations (0.065-0.65 μM for SER and 0.12-0.92 μM for CIT). Pathway analysis revealed unexpected results of downregulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have implications in the maintenance of a healthy metabolic balance.
Collapse
Affiliation(s)
- Deniz Bozdag
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands; Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, 35040 Izmir, Turkey.
| | - Jeroen van Voorthuizen
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Nikita Korpel
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Sander Lentz
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Hande Gurer-Orhan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, 35040 Izmir, Turkey
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
11
|
Hämälistö S, Del Valle Batalla F, Yuseff MI, Mattila PK. Endolysosomal vesicles at the center of B cell activation. J Cell Biol 2024; 223:e202307047. [PMID: 38305771 PMCID: PMC10837082 DOI: 10.1083/jcb.202307047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The endolysosomal system specializes in degrading cellular components and is crucial to maintaining homeostasis and adapting rapidly to metabolic and environmental cues. Cells of the immune system exploit this network to process antigens or promote cell death by secreting lysosome-related vesicles. In B lymphocytes, lysosomes are harnessed to facilitate the extraction of antigens and to promote their processing into peptides for presentation to T cells, critical steps to mount protective high-affinity antibody responses. Intriguingly, lysosomal vesicles are now considered important signaling units within cells and also display secretory functions by releasing their content to the extracellular space. In this review, we focus on how B cells use pathways involved in the intracellular trafficking, secretion, and function of endolysosomes to promote adaptive immune responses. A basic understanding of such mechanisms poses an interesting frontier for the development of therapeutic strategies in the context of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Saara Hämälistö
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Cancer Research Unit and FICAN West Cancer Centre Laboratory, Turku, Finland
| | - Felipe Del Valle Batalla
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Moriwaki T, Terawaki S, Otomo T. Impaired lysosomal acidity maintenance in acid lipase-deficient cells leads to defective autophagy. J Biol Chem 2024; 300:105743. [PMID: 38354786 PMCID: PMC10933554 DOI: 10.1016/j.jbc.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.
Collapse
Affiliation(s)
- Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
13
|
Sudul P, Piatkowska-Jakubas B, Pawlinski L, Galazka K, Sacha T, Kiec-Wilk B. The Complexities of Diagnosis with Co-Existing Gaucher Disease and Hemato-Oncology-A Case Report and Review of the Literature. J Clin Med 2023; 12:5518. [PMID: 37685585 PMCID: PMC10488105 DOI: 10.3390/jcm12175518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Hematological abnormalities are the most common early symptoms of Gaucher disease (GD), with an increased risk of hematopoietic system malignancies reported in patients with GD. GD may be associated with monoclonal and polyclonal gammopathies; however, the mechanism of association of GD with multiple myeloma (MM) remains uncertain. Enzyme replacement therapy (ERT) has been shown to improve patients' cytopenia and it seems to facilitate anti-myeloma therapy in patients with co-occurring GD and MM. Although it is necessary to demonstrate the deficiency of enzymatic activity, as well as using genetic tests to finally diagnose GD, due to changes in the blood count image, bone marrow biopsy is still a frequent element of the GD diagnosis procedure. The diagnosis of GD is often delayed, mainly due to the heterogeneity of the histopathological picture of bone marrow biopsy or overlapping hematological abnormalities. Unrecognized and untreated GD worsens the response of a patient with an oncological disease to targeted treatment. We present a literature review, inspired by the case of a Caucasian patient initially diagnosed with MM and later confirmed with comorbid GD type 1 (GD1). We would like to point out the problem of underdiagnosis and delay in patients with GD.
Collapse
Affiliation(s)
- Paulina Sudul
- University Hospital, 30-688 Krakow, Poland
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Beata Piatkowska-Jakubas
- University Hospital, 30-688 Krakow, Poland
- Department of Hematology, Jagiellonian University Medical College, 30-501 Krakow, Poland
| | - Lukasz Pawlinski
- University Hospital, 30-688 Krakow, Poland
- European Reference Network for Rare Metabolic Disease MetabERN, 30-688 Krakow, Poland
| | - Krystyna Galazka
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Tomasz Sacha
- University Hospital, 30-688 Krakow, Poland
- Department of Hematology, Jagiellonian University Medical College, 30-501 Krakow, Poland
| | - Beata Kiec-Wilk
- University Hospital, 30-688 Krakow, Poland
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, 30-688 Krakow, Poland
- European Reference Network for Rare Metabolic Disease MetabERN, 30-688 Krakow, Poland
| |
Collapse
|
14
|
MicroRNA profiling of subcutaneous adipose tissue in periparturient dairy cows at high or moderate body condition. Sci Rep 2022; 12:14748. [PMID: 36042230 PMCID: PMC9427980 DOI: 10.1038/s41598-022-18956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
A growing body of evidence shows that microRNA (miRNA), play important roles in regulating adipose tissue (AT) physiology and function. The objective was to characterize the AT miRNA profile in over-conditioned (HBCS, n = 19) versus moderate-conditioned (MBCS, n = 19) periparturient dairy cows. Tail-head subcutaneous AT biopsied on d -49 and 21 relative to parturition were used for miRNA sequencing. The miR-486 was the most significant miRNA among the upregulated miRNA on d -49, which might be related to more pronounced changes in lipogenesis and altered insulin sensitivity in AT of HBCS cows at dry-off. Comparing HBCS to MBCS on d 21, 23 miRNA were downregulated and 20 were upregulated. The predicted targets of upregulated differentially expressed (DE)-miRNA on d 21 were enriched in different pathways, including pathways related to lysosomes and peroxisomes. The predicted targets of downregulated DE-miRNA on d 21 were enriched in various pathways, including epidermal growth factor receptor, insulin resistance, hypoxia-inducible factor 1 signaling pathway, and autophagy. The results showed that over-conditioning was associated with changes in SCAT miRNA profile mainly on d 21, of which most were downregulated. The enriched pathways may participate in over-conditioning-associated metabolic challenges during early lactation.
Collapse
|