1
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
2
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Vogt G. Phenotypic plasticity in the monoclonal marbled crayfish is associated with very low genetic diversity but pronounced epigenetic diversity. Curr Zool 2023; 69:426-441. [PMID: 37614917 PMCID: PMC10443617 DOI: 10.1093/cz/zoac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/19/2022] [Indexed: 08/25/2023] Open
Abstract
Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, Procambarus virginalis, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish Procambarus fallax. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Venkatesh G, Tönges S, Hanna K, Ng YL, Whelan R, Andriantsoa R, Lingenberg A, Roy S, Nagarajan S, Fong S, Raddatz G, Böhl F, Lyko F. Context-dependent DNA methylation signatures in animal livestock. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad001. [PMID: 36936885 PMCID: PMC10019019 DOI: 10.1093/eep/dvad001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
DNA methylation is an important epigenetic modification that is widely conserved across animal genomes. It is widely accepted that DNA methylation patterns can change in a context-dependent manner, including in response to changing environmental parameters. However, this phenomenon has not been analyzed in animal livestock yet, where it holds major potential for biomarker development. Building on the previous identification of population-specific DNA methylation in clonal marbled crayfish, we have now generated numerous base-resolution methylomes to analyze location-specific DNA methylation patterns. We also describe the time-dependent conversion of epigenetic signatures upon transfer from one environment to another. We further demonstrate production system-specific methylation signatures in shrimp, river-specific signatures in salmon and farm-specific signatures in chicken. Together, our findings provide a detailed resource for epigenetic variation in animal livestock and suggest the possibility for origin tracing of animal products by epigenetic fingerprinting.
Collapse
Affiliation(s)
- Geetha Venkatesh
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Sina Tönges
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Katharina Hanna
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Yi Long Ng
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
| | - Rose Whelan
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Annika Lingenberg
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Suki Roy
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Sanjanaa Nagarajan
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Steven Fong
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Florian Böhl
- Research, Development & Innovation, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Whelan R, Tönges S, Böhl F, Lyko F. Epigenetic biomarkers for animal welfare monitoring. Front Vet Sci 2023; 9:1107843. [PMID: 36713882 PMCID: PMC9874107 DOI: 10.3389/fvets.2022.1107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Biomarkers for holistic animal welfare monitoring represent a considerable unmet need in veterinary medicine. Epigenetic modifications, like DNA methylation, provide important information about cellular states and environments, which makes them highly attractive for biomarker development. Up until now, much of the corresponding research has been focused on human cancers. However, the increasing availability of animal genomes and epigenomes has greatly improved our capacity for epigenetic biomarker development. In this review, we provide an overview about animal DNA methylation patterns and the technologies that enable the analysis of these patterns. We also describe the key frameworks for compound DNA methylation biomarkers, DNA methylation clocks and environment-specific DNA methylation signatures, that allow complex, context-dependent readouts about animal health and disease. Finally, we provide practical examples for how these biomarkers could be applied for health and environmental exposure monitoring, two key aspects of animal welfare assessments. Taken together, our article provides an overview about the molecular and biological foundations for the development of epigenetic biomarkers in veterinary science and their application potential in animal welfare monitoring.
Collapse
Affiliation(s)
- Rose Whelan
- Creavis, Evonik Operations GmbH, Hanau, Germany
| | - Sina Tönges
- Innovation Management, German Cancer Research Center, Heidelberg, Germany
| | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany,*Correspondence: Frank Lyko ✉
| |
Collapse
|
6
|
Vogt G. Environmental Adaptation of Genetically Uniform Organisms with the Help of Epigenetic Mechanisms-An Insightful Perspective on Ecoepigenetics. EPIGENOMES 2022; 7:1. [PMID: 36648862 PMCID: PMC9844400 DOI: 10.3390/epigenomes7010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Organisms adapt to different environments by selection of the most suitable phenotypes from the standing genetic variation or by phenotypic plasticity, the ability of single genotypes to produce different phenotypes in different environments. Because of near genetic identity, asexually reproducing populations are particularly suitable for the investigation of the potential and molecular underpinning of the latter alternative in depth. Recent analyses on the whole-genome scale of differently adapted clonal animals and plants demonstrated that epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are among the molecular pathways supporting phenotypic plasticity and that epigenetic variation is used to stably adapt to different environments. Case studies revealed habitat-specific epigenetic fingerprints that were maintained over subsequent years pointing at the existence of epigenetic ecotypes. Environmentally induced epimutations and corresponding gene expression changes provide an ideal means for fast and directional adaptation to changing or new conditions, because they can synchronously alter phenotypes in many population members. Because microorganisms inclusive of human pathogens also exploit epigenetically mediated phenotypic variation for environmental adaptation, this phenomenon is considered a universal biological principle. The production of different phenotypes from the same DNA sequence in response to environmental cues by epigenetic mechanisms also provides a mechanistic explanation for the "general-purpose genotype hypothesis" and the "genetic paradox of invasions".
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Jie X, Wu H, Yang M, He M, Zhao G, Ling S, Huang Y, Yue B, Yang N, Zhang X. Whole genome bisulfite sequencing reveals DNA methylation roles in the adaptive response of wildness training giant pandas to wild environment. Front Genet 2022; 13:995700. [PMID: 36303550 PMCID: PMC9592921 DOI: 10.3389/fgene.2022.995700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation modification can regulate gene expression without changing the genome sequence, which helps organisms to rapidly adapt to new environments. However, few studies have been reported in non-model mammals. Giant panda (Ailuropoda melanoleuca) is a flagship species for global biodiversity conservation. Wildness and reintroduction of giant pandas are the important content of giant pandas’ protection. However, it is unclear how wildness training affects the epigenetics of giant pandas, and we lack the means to assess the adaptive capacity of wildness training giant pandas. We comparatively analyzed genome-level methylation differences in captive giant pandas with and without wildness training to determine whether methylation modification played a role in the adaptive response of wildness training pandas. The whole genome DNA methylation sequencing results showed that genomic cytosine methylation ratio of all samples was 5.35%–5.49%, and the methylation ratio of the CpG site was the highest. Differential methylation analysis identified 544 differentially methylated genes (DMGs). The results of KEGG pathway enrichment of DMGs showed that VAV3, PLCG2, TEC and PTPRC participated in multiple immune-related pathways, and may participate in the immune response of wildness training giant pandas by regulating adaptive immune cells. A large number of DMGs enriched in GO terms may also be related to the regulation of immune activation during wildness training of giant pandas. Promoter differentially methylation analysis identified 1,199 genes with differential methylation at promoter regions. Genes with low methylation level at promoter regions and high expression such as, CCL5, P2Y13, GZMA, ANP32A, VWF, MYOZ1, NME7, MRPS31 and TPM1 were important in environmental adaptation for wildness training giant pandas. The methylation and expression patterns of these genes indicated that wildness training giant pandas have strong immunity, blood coagulation, athletic abilities and disease resistance. The adaptive response of giant pandas undergoing wildness training may be regulated by their negatively related promoter methylation. We are the first to describe the DNA methylation profile of giant panda blood tissue and our results indicated methylation modification is involved in the adaptation of captive giant pandas when undergoing wildness training. Our study also provided potential monitoring indicators for the successful reintroduction of valuable and threatened animals to the wild.
Collapse
Affiliation(s)
- Xiaodie Jie
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Honglin Wu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Miao Yang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Guangqing Zhao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Shanshan Ling
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- *Correspondence: Nan Yang, ; Xiuyue Zhang,
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Nan Yang, ; Xiuyue Zhang,
| |
Collapse
|
8
|
Vogt G. Paradigm shifts in animal epigenetics: Research on non-model species leads to new insights into dependencies, functions and inheritance of DNA methylation. Bioessays 2022; 44:e2200040. [PMID: 35618444 DOI: 10.1002/bies.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Recent investigations with non-model species and whole-genome approaches have challenged several paradigms in animal epigenetics. They revealed that epigenetic variation in populations is not the mere consequence of genetic variation, but is a semi-independent or independent source of phenotypic variation, depending on mode of reproduction. DNA methylation is not positively correlated with genome size and phylogenetic position as earlier believed, but has evolved differently between and within higher taxa. Epigenetic marks are usually not completely erased in the zygote and germ cells as generalized from mouse, but often persist and can be transgenerationally inherited, making them evolutionarily relevant. Gene body methylation and promoter methylation are similar in vertebrates and invertebrates with well methylated genomes but transposon silencing through methylation is variable. The new data also suggest that animals use epigenetic mechanisms to cope with rapid environmental changes and to adapt to new environments. The main benefiters are asexual populations, invaders, sessile taxa and long-lived species.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Mayne B, Mustin W, Baboolal V, Casella F, Ballorain K, Barret M, Vanderklift MA, Tucker AD, Korbie D, Jarman S, Berry O. Age prediction of green turtles with an epigenetic clock. Mol Ecol Resour 2022; 22:2275-2284. [DOI: 10.1111/1755-0998.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform Indian Oceans Marine Research Centre Commonwealth Scientific and Industrial Research Organisation (CSIRO) Crawley Western Australia Australia
| | - Walter Mustin
- Cayman Turtle Conservation and Education Centre Grand Cayman KY1‐1301 Cayman Islands
| | - Vandanaa Baboolal
- Cayman Turtle Conservation and Education Centre Grand Cayman KY1‐1301 Cayman Islands
| | - Francesca Casella
- Cayman Turtle Conservation and Education Centre Grand Cayman KY1‐1301 Cayman Islands
| | - Katia Ballorain
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM) 19 Cité des Frangipaniers 97424 Piton Saint‐Leu, La Réunion France
| | - Mathieu Barret
- Kélonia l’observatoire des tortues marines 46 Rue Général de Gaulle 97436 Saint‐Leu, La Réunion France
| | - Mathew A. Vanderklift
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere Crawley Western Australia Australia
| | - Anton D. Tucker
- Department of Biodiversity, Conservation and Attractions Marine Science Program Kensington Western Australia Australia
| | - Darren Korbie
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
| | - Simon Jarman
- School of Biological Sciences University of Western Australia 35 Stirling Highway Perth Western Australia Australia
| | - Oliver Berry
- Environomics Future Science Platform Indian Oceans Marine Research Centre Commonwealth Scientific and Industrial Research Organisation (CSIRO) Crawley Western Australia Australia
| |
Collapse
|
10
|
Vogt G. Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Naturwissenschaften 2022; 109:16. [PMID: 35099618 DOI: 10.1007/s00114-021-01782-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-year-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphological, behavioural and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined analysis of phenotypic traits and DNA methylation across multiple biological contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|