1
|
Bedore S, van der Eerden J, Boghani F, Patel SJ, Yassin S, Aguilar K, Lokeshwar VB. Protein-Based Predictive Biomarkers to Personalize Neoadjuvant Therapy for Bladder Cancer-A Systematic Review of the Current Status. Int J Mol Sci 2024; 25:9899. [PMID: 39337385 PMCID: PMC11432686 DOI: 10.3390/ijms25189899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The clinical outcome of patients with muscle-invasive bladder cancer (MIBC) is poor despite the approval of neoadjuvant chemotherapy or immunotherapy to improve overall survival after cystectomy. MIBC subtypes, immune, transcriptome, metabolomic signatures, and mutation burden have the potential to predict treatment response but none have been incorporated into clinical practice, as tumor heterogeneity and lineage plasticity influence their efficacy. Using the PRISMA statement, we conducted a systematic review of the literature, involving 135 studies published within the last five years, to identify studies reporting on the prognostic value of protein-based biomarkers for response to neoadjuvant therapy in patients with MIBC. The studies were grouped based on biomarkers related to molecular subtypes, cancer stem cell, actin-cytoskeleton, epithelial-mesenchymal transition, apoptosis, and tumor-infiltrating immune cells. These studies show the potential of protein-based biomarkers, especially in the spatial context, to reduce the influence of tumor heterogeneity on a biomarker's prognostic capability. Nevertheless, currently, there is little consensus on the methodology, reagents, and the scoring systems to allow reliable assessment of the biomarkers of interest. Furthermore, the small sample size of several studies necessitates the validation of potential prognostic biomarkers in larger multicenter cohorts before their use for individualizing neoadjuvant therapy regimens for patients with MIBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (S.B.); (J.v.d.E.); (S.J.P.); (S.Y.); (K.A.)
| |
Collapse
|
2
|
YADOLLAHVANDMIANDOAB REZA, JALALIZADEH MEHRSA, DIONATO FRANCIELEAPARECIDAVECHIA, BUOSI KEINI, LEME PATRÍCIAAF, COL LUCIANASBDAL, GIACOMELLI CRISTIANEF, ASSIS ALEXDIAS, BASHIRICHELKASARI NASIM, REIS LEONARDOOLIVEIRA. Clinical implications of single cell sequencing for bladder cancer. Oncol Res 2024; 32:597-605. [PMID: 38560564 PMCID: PMC10972735 DOI: 10.32604/or.2024.045442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/08/2024] [Indexed: 04/04/2024] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer worldwide, with about 0.5 million reported new cases and about 0.2 million deaths per year. In this scoping review, we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines. We searched PubMed, CENTRAL, Embase, and supplemented with manual searches through the Scopus, and Web of Science for published studies until February 2023. We included original studies that used at least one single-cell technology to study bladder cancer. Forty-one publications were included in the review. Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy. Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples. The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level. Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management. This nascent tool can advance the early diagnosis, prognosis judgment, and targeted therapy of bladder cancer.
Collapse
Affiliation(s)
- REZA YADOLLAHVANDMIANDOAB
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - MEHRSA JALALIZADEH
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | | | - KEINI BUOSI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - PATRÍCIA A. F. LEME
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LUCIANA S. B. DAL COL
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - CRISTIANE F. GIACOMELLI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - ALEX DIAS ASSIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - NASIM BASHIRICHELKASARI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LEONARDO OLIVEIRA REIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Sao Paulo, 13087-571, Brazil
| |
Collapse
|