1
|
Xie C, Gong J, Zheng C, Zhang J, Gao J, Tian C, Guo X, Dai S, Gao T. Effects of vitamin K supplementation on bone mineral density at different sites and bone metabolism in the middle-aged and elderly population. Bone Joint Res 2024; 13:750-763. [PMID: 39657786 PMCID: PMC11631259 DOI: 10.1302/2046-3758.1312.bjr-2024-0053.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Aims This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC. Conclusion This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC.
Collapse
Affiliation(s)
- Chenqi Xie
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Chenglong Zheng
- Jinan Railway Center for Disease Control and Prevention, Jinan, China
| | - Junwei Zhang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, China
| | - Jie Gao
- School of Public Health, Qingdao University, Qingdao, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaofei Guo
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Osteoarthrosis, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Syed NH, Misbah I, Azlan M, Ahmad Mohd Zain MR, Nurul AA. Exosomes in Osteoarthritis: A Review on Their Isolation Techniques and Therapeutic Potential. Indian J Orthop 2024; 58:866-875. [PMID: 38948378 PMCID: PMC11208382 DOI: 10.1007/s43465-024-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024]
Abstract
Background Exosomes are the smallest extracellular vesicles (30-150 nm) secreted by all cell types, including synovial fluid. However, because biological fluids are complex, heterogeneous, and contain contaminants, their isolation is difficult and time-consuming. Furthermore, the pathophysiology of osteoarthritis (OA) involves exosomes carrying complex components that cause macrophages to release chemokines and proinflammatory cytokines. This narrative review aims to provide in-depth insights into exosome biology, isolation techniques, role in OA pathophysiology, and potential role in future OA therapeutics. Methods A literature search was conducted using PubMed, Scopus, and Web of Science databases for studies involving exosomes in the osteoarthritis using keywords "Exosomes" and "Osteoarthritis". Relevant articles in the last 15 years involving both human and animal models were included. Studies involving exosomes in other inflammatory diseases were excluded. Results Despite some progress, conventional techniques for isolating exosomes remain laborious and difficult, requiring intricate and time-consuming procedures across various body fluids and sample origins. Moreover, exosomes are involved in various physiological processes associated with OA, like cartilage calcification, degradation of osteoarthritic joints, and inflammation. Conclusion The process of achieving standardization, integration, and high throughput of exosome isolation equipment is challenging and time-consuming. The integration of various methodologies can be employed to effectively address specific issues by leveraging their complementary benefits. Exosomes have the potential to effectively repair damaged cartilage OA, reduce inflammation, and maintain a balance between the formation and breakdown of cartilage matrix, therefore showing promise as a therapeutic option for OA.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- Center for Global Health Research, Saveetha Medical Collage and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Iffath Misbah
- Department of Radio Diagnosis, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Maryam Azlan
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
4
|
Chen L, Zhong Y, Sun S, Yang Z, Hong H, Zou D, Song C, Li W, Leng H. HTRA1 from OVX rat osteoclasts causes detrimental effects on endplate chondrocytes through NF-κB. Heliyon 2023; 9:e17595. [PMID: 37416639 PMCID: PMC10320255 DOI: 10.1016/j.heliyon.2023.e17595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Endplate osteochondritis is considered one of the major causes of intervertebral disc degeneration (IVDD) and low back pain. Menopausal women have a higher rate of endplate cartilage degeneration than similarly aged men, but the related mechanisms are still unclear. Subchondral bone changes, mainly mediated by osteoblasts and osteoclasts, are considered an important reason for the degeneration of cartilage. This work explored the role of osteoclasts in endplate cartilage degeneration, as well as its underlying mechanisms. A rat ovariectomy (OVX) model was used to induce estrogen deficiency. Our experiments indicated that OVX significantly promoted osteoclastogenesis and anabolism and catabolism changes in endplate chondrocytes. OVX osteoclasts cause an imbalance between anabolism and catabolism in endplate chondrocytes, as shown by a decrease in anabolic markers such as Aggrecan and Collagen II, and an increase in catabolic markers such as a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinases (MMP13). Osteoclasts were also confirmed in this study to be able to secrete HtrA serine peptidase 1 (HTRA1), which resulted in increased catabolism in endplate chondrocytes through the NF-κB pathway under estrogen deficiency. This study demonstrated the involvement and mechanism of osteoclasts in the anabolism and catabolism changes of endplate cartilage under estrogen deficiency, and proposed a new strategy for the treatment of endplate osteochondritis and IVDD by targeting HTRA1.
Collapse
Affiliation(s)
- Longting Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yiming Zhong
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Shang Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zihuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Haofeng Hong
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Da Zou
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, China
| | - Chunli Song
- Beijing Key Lab of Spine Diseases, Beijing, 100191, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
5
|
Mishra A, Kumar R, Mishra SN, Vijayaraghavalu S, Tiwari NK, Shukla GC, Gurusamy N, Kumar M. Differential Expression of Non-Coding RNAs in Stem Cell Development and Therapeutics of Bone Disorders. Cells 2023; 12:cells12081159. [PMID: 37190068 PMCID: PMC10137108 DOI: 10.3390/cells12081159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Satya Narayan Mishra
- Maa Gayatri College of Pharmacy, Dr. APJ Abdul Kalam Technical University, Prayagraj 211009, India
| | | | - Neeraj Kumar Tiwari
- Department of IT-Satellite Centre, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Girish C Shukla
- Department of Biological, Geological, and Environmental Sciences, 2121 Euclid Ave., Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
6
|
Zhang C, Pan L, Zhang H, Ke T, Yang Y, Zhang L, Chen L, Tan J. Osteoblasts-Derived Exosomal lncRNA-MALAT1 Promotes Osteoclastogenesis by Targeting the miR-124/NFATc1 Signaling Axis in Bone Marrow-Derived Macrophages. Int J Nanomedicine 2023; 18:781-795. [PMID: 36814857 PMCID: PMC9939803 DOI: 10.2147/ijn.s395607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Objective Emerging studies have explained the crucial role of non-coding RNA (lncRNA) in various pathological progressions. The study was designed to examine the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miRNA-124 in the differentiation of osteoclasts, to provide new clues or evidences for the pathogenesis of periodontitis. Methods We constructed an osteoblast-osteoclast Transwell co-culture system and osteoblast-derived exosomes (OB-exo) intervention model. We assessed the osteoclastogenesis as well as the level of lncRNA-MALAT1 and miRNA-124. The mechanism for lncRNA MALAT1 targeting miR-124 modulating the differentiation of osteoclasts was investigated by cell transfection, quantitative real-time reverse transcription PCR (RT-qPCR), Western blot, and Dual-Luciferase reporter assays. Results Osteoblast-derived exosomes were isolated and identified. Co-culture and OB-exo intervention can promote osteoclastogenesis, also significantly up-regulate the expression of MALAT1, while the level of miR-124 is the opposite. Transfection of cells with small interfering RNA (si-MALAT1) and miR-124 mimic decreased the formation of TRAP+ osteoclasts and inhibited the expression of NFATc1. However, the effect was reversed when transfected with miR-124 inhibitor and si-MALAT1. The Dual-Luciferase reporter assay confirmed the binding sites between MALAT1 and miR-124, and miR-124 and NFATc1. Conclusion LncRNA MALAT1 functioned as an endogenous sponge by competing for miR-124 binding to regulate NFATc1 expression, accelerating the progression of osteoclastogenesis.
Collapse
Affiliation(s)
- Chenyi Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Lai Pan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Haizheng Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Ting Ke
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Yuxuan Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Lan Zhang
- Stomatology Department, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China,Correspondence: Lili Chen; Jingyi Tan, Email ;
| | - Jingyi Tan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|
8
|
Kakuki T, Kohno T, Nishida S, Konno T, Kikuchi S, Ohwada K, Nakano M, Tezuka M, Takano K, Kojima T. FOXO3/TGF-β signal-dependent ciliogenesis and cell functions during differentiation of temperature-sensitive mouse cochlear precursor hair cells. Histochem Cell Biol 2022; 157:415-426. [PMID: 35024955 DOI: 10.1007/s00418-021-02068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
The transcription factor FOXO3 is necessary to preserve cochlear hair cells. Growth factors, including TGF-β, closely contribute to cochlear hair cell regeneration. In the present study, to investigate the roles of FOXO3 in the ciliogenesis and cell functions of cochlear hair cells, UB/OC-2 temperature-sensitive mouse cochlear precursor hair cells were treated with TGF-β receptor type 1 inhibitor EW-7197 or EGF receptor inhibitor AG-1478 after transfection with or without siRNA-FOXO3a. GeneChip analysis revealed that treatment with EW-7197 increased Foxo3 genes and decreased genes of Smads. During cell differentiation, treatment with EW-7197 or AG-1478 induced an increase in length of cilia-like structures that were positive for acetylated tubulin and inhibited cell migration. Treatment with EW-7197 also increased cell metabolism measured as mitochondrial basal respiration (oxygen consumption rate). The effects of EW-7197 were stronger than those of AG-1478. Knockdown of FOXO3 prevented the growth of cilia-like structures induced by EW-7197 or AG-1478 and induced cell migration under treatment with EW-7197. No change of the epithelial cell polarity molecule PAR3 was observed with any treatment. Treatment with the antimicrobial agent amikacin prevented the growth of cilia-like structures induced by EW-7197 and induced apoptosis. Pretreatment with the glucocorticoid dexamethasone inhibited the apoptosis induced by amikacin. This in vitro model of mouse cochlear hair cells suggests that FOXO3/TGF-β signaling plays a crucial role in ciliogenesis and cell functions during differentiation of cochlear hair cells. This model is useful for analysis of the mechanisms of hearing loss and to find therapeutic agents to prevent it.
Collapse
Affiliation(s)
- Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Soshi Nishida
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kizuku Ohwada
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masaya Nakano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mitsuki Tezuka
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|