1
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Chen X, Li Y, Huang J, Zhang Q, Tan C, Liu Y, Du Z. Prognosis and immunotherapy significances of a cancer-associated fibroblasts-related gene signature in bladder urothelial carcinoma. Discov Oncol 2024; 15:622. [PMID: 39503984 PMCID: PMC11541995 DOI: 10.1007/s12672-024-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/01/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND The biological significance of cancer-associated fibroblasts (CAFs) in bladder urothelial carcinoma (BUC) warrants further investigation. There is an urgent need to explore the predictive utility of CAF-related genes for prognosis in BUC. METHODS The transcriptome and clinical data of 407 BUC patients in The Cancer Genome Atlas (TCGA) database were analyzed and a prognostic model was established. A total of 476 BUC cases from the E-MTAB-4321 database were used for validation. A risk model was constructed utilizing CAF-related genes through LASSO Cox regression, investigating its association with prognosis, gene mutations, immune cell infiltration, and drug sensitivity in BUC. RESULTS We identified five CAF-related genes (EGFL6, NRSN2, SEMA3D, TM4SF1 and TPST1) in both the TCGA and E-MTAB-4321 datasets, and established a prognostic model using LASSO Cox regression. The high-risk group showed a significant correlation with poor survival. Furthermore, the low-risk group exhibited higher tumor mutational burden and lower levels of immune cell infiltration, and this model holds promise for guiding drug selection in BUC patients. CONCLUSIONS These findings underscore the pivotal role of CAF-related genes in prognostic prediction for BUC patients. Clinical decision-making and tailored therapeutics stand to benefit from these results, providing a valuable reference for future research endeavors.
Collapse
Affiliation(s)
- Xiaobin Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yugen Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qiang Zhang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chunlin Tan
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
3
|
Chatterjee D, Mou SI, Sultana T, Hosen MI, Faruk MO. Identification and validation of prognostic signature genes of bladder cancer by integrating methylation and transcriptomic analysis. Sci Rep 2024; 14:368. [PMID: 38172584 PMCID: PMC10764961 DOI: 10.1038/s41598-023-50740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Being a frequent malignant tumor of the genitourinary system, Bladder Urothelial Carcinoma (BLCA) has a poor prognosis. This study focused on identifying and validating prognostic biomarkers utilizing methylation, transcriptomics, and clinical data from The Cancer Genome Atlas Bladder Urothelial Carcinoma (TCGA BLCA) cohort. The impact of altered differentially methylated hallmark pathway genes was subjected to clustering analysis to observe changes in the transcriptional landscape on BLCA patients and identify two subtypes of patients from the TCGA BLCA population where Subtype 2 was associated with the worst prognosis with a p-value of 0.00032. Differential expression and enrichment analysis showed that subtype 2 was enriched in immune-responsive and cancer-progressive pathways, whereas subtype 1 was enriched in biosynthetic pathways. Following, regression and network analyses revealed Epidermal Growth Factor Receptor (EGFR), Fos-related antigen 1 (FOSL1), Nuclear Factor Erythroid 2 (NFE2), ADP-ribosylation factor-like protein 4D (ARL4D), SH3 domain containing ring finger 2 (SH3RF2), and Cadherin 3 (CDH3) genes to be the most significant prognostic gene markers. These genes were used to construct a risk model that separated the BLCA patients into high and low-risk groups. The risk model was also validated in an external dataset by performing survival analysis between high and low-risk groups with a p-value < 0.001 and the result showed the high group was significantly associated with poor prognosis compared to the low group. Single-cell analyses revealed the elevated level of these genes in the tumor microenvironment and associated with immune response. High-grade patients also tend to have a high expression of these genes compared to low-grade patients. In conclusion, this research developed a six-gene signature that is pertinent to the prediction of overall survival (OS) and might contribute to the advancement of precision medicine in the management of bladder cancer.
Collapse
Affiliation(s)
- Dipankor Chatterjee
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sadia Islam Mou
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tamanna Sultana
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Omar Faruk
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
4
|
Gilyazova I, Enikeeva K, Rafikova G, Kagirova E, Sharifyanova Y, Asadullina D, Pavlov V. Epigenetic and Immunological Features of Bladder Cancer. Int J Mol Sci 2023; 24:9854. [PMID: 37373000 DOI: 10.3390/ijms24129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. Globally, the incidence of BLCA is more than 500,000 new cases worldwide annually, and every year, the number of registered cases of BLCA increases noticeably. Currently, the diagnosis of BLCA is based on cystoscopy and cytological examination of urine and additional laboratory and instrumental studies. However, cystoscopy is an invasive study, and voided urine cytology has a low level of sensitivity, so there is a clear need to develop more reliable markers and test systems for detecting the disease with high sensitivity and specificity. Human body fluids (urine, serum, and plasma) are known to contain significant amounts of tumorigenic nucleic acids, circulating immune cells and proinflammatory mediators that can serve as noninvasive biomarkers, particularly useful for early cancer detection, follow-up of patients, and personalization of their treatment. The review describes the most significant advances in epigenetics of BLCA.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
5
|
Luo X, Wang Y, Zou Q, Xu L. Recall DNA methylation levels at low coverage sites using a CNN model in WGBS. PLoS Comput Biol 2023; 19:e1011205. [PMID: 37315069 DOI: 10.1371/journal.pcbi.1011205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
DNA methylation is an important regulator of gene transcription. WGBS is the gold-standard approach for base-pair resolution quantitative of DNA methylation. It requires high sequencing depth. Many CpG sites with insufficient coverage in the WGBS data, resulting in inaccurate DNA methylation levels of individual sites. Many state-of-arts computation methods were proposed to predict the missing value. However, many methods required either other omics datasets or other cross-sample data. And most of them only predicted the state of DNA methylation. In this study, we proposed the RcWGBS, which can impute the missing (or low coverage) values from the DNA methylation levels on the adjacent sides. Deep learning techniques were employed for the accurate prediction. The WGBS datasets of H1-hESC and GM12878 were down-sampled. The average difference between the DNA methylation level at 12× depth predicted by RcWGBS and that at >50× depth in the H1-hESC and GM2878 cells are less than 0.03 and 0.01, respectively. RcWGBS performed better than METHimpute even though the sequencing depth was as low as 12×. Our work would help to process methylation data of low sequencing depth. It is beneficial for researchers to save sequencing costs and improve data utilization through computational methods.
Collapse
Affiliation(s)
- Ximei Luo
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Abol-Elnazer HF, Awadalla A, Ahmed AE, Abol-Enein H, Al Ganzouri MA, Elsawy AA. Novel urine-based DNA methylation biomarkers for urothelial bladder carcinoma detection in patients with hematuria. Arab J Urol 2023; 21:248-257. [PMID: 38178946 PMCID: PMC10763582 DOI: 10.1080/2090598x.2023.2208492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 01/06/2024] Open
Abstract
Background Urothelial bladder carcinoma (UBC) is usually detected during work-up for hematuria. Cystoscopy and/or contrast-enhanced imaging are the gold standard tools for UBC diagnosis, despite limited by being invasive, expensive and low yield in small flat tumors. Objectives To assess the diagnostic performance of urine-based DNA methylation of six genes (GATA4, P16, P14, APC, CDH1 and CD99) for UBC detection in patients with hematuria. Patients and methods Voided urine was collected from consecutive patients presented with hematuria for urine cytology and DNA methylation assay of the assigned genes using methylation-specific Polymerase Chain Reaction (PCR). Further assessment by office cystoscopy and imaging with subsequent inpatient cystoscopic biopsy for positive findings was done. The diagnostic characteristics of DNA methylation and urine cytology were assessed based on its capability to predict UBC. Results We included 246 patients in the study with identified macroscopic hematuria in 204 (82.9%) patients. Positive cytology was found in 78 (31.7%) patients. DNA methylation of GATA4, P16, P14, APC, CDH1 and CD99 genes was identified in 127 (51.6%), 52 (21.1%), 117 (47.6%), 106 (43.1%), 90 (36.6%) and 71 (28.9%) patients, respectively. The sensitivity of the assigned genes for UBC detection ranges from 35% (95%CI: 31-39) to 83% (95%CI: 79-87). Optimal specificity (SP) (100%) was noted for P16, APC and CDH1 genes. While for the other genes (GATA4, P14 and CD99), the SP was 95% (95%CI: 92-98), 96% (95%CI: 92-99) and 97% (95%CI: 93-99), respectively. On multivariate logistic regression analysis, all genes exclusively demonstrated independent prediction of UBC. On receiver operator characteristic (ROC) analysis, all tested genes methylation showed superior area under the curve (AUC) when compared to urine cytology. Conclusions We have developed a novel urine-based DNA methylation assay for detection of UBC in patients with hematuria with superior diagnostic performance and independent predictive capacity over urine cytology.
Collapse
Affiliation(s)
| | - Amira Awadalla
- Center of Excellent for Genome and Cancer Research (CEG-CR), Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Asmaa E. Ahmed
- Center of Excellent for Genome and Cancer Research (CEG-CR), Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Hassan Abol-Enein
- Center of Excellent for Genome and Cancer Research (CEG-CR), Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
- Urology department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Amr A. Elsawy
- Urology department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Bhootra S, Jill N, Shanmugam G, Rakshit S, Sarkar K. DNA methylation and cancer: transcriptional regulation, prognostic, and therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:71. [PMID: 36602616 DOI: 10.1007/s12032-022-01943-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
DNA methylation is one among the major grounds of cancer progression which is characterized by the addition of a methyl group to the promoter region of the gene thereby causing gene silencing or increasing the probability of mutations; however, in bacteria, methylation is used as a defense mechanism where DNA protection is by addition of methyl groups making restriction enzymes unable to cleave. Hypermethylation and hypomethylation both pose as leading causes of oncogenesis; the former being more frequent which occurs at the CpG islands present in the promoter region of the genes, whereas the latter occurs globally in various genomic sequences. Reviewing methylation profiles would help in the detection and treatment of cancers. Demethylation is defined as preventing methyl group addition to the cytosine DNA base which could cause cancers in case of global hypomethylation, however, upon further investigation; it could be used as a therapeutic tool as well as for drug design in cancer treatment. In this review, we have studied the molecules that induce and enzymes (DNMTs) that bring about methylation as well as comprehend the correlation between methylation with transcription factors and various signaling pathways. DNA methylation has also been reviewed in terms of how it could serve as a prognostic marker and the various therapeutic drugs that have come into the market for reversing methylation opening an avenue toward curing cancers.
Collapse
Affiliation(s)
- Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
8
|
Neary B, Lin S, Qiu P. Methylation of CpG Sites as Biomarkers Predictive of Drug-Specific
Patient Survival in Cancer. Cancer Inform 2022; 21:11769351221131124. [PMID: 36340286 PMCID: PMC9634212 DOI: 10.1177/11769351221131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Though the development of targeted cancer drugs continues to accelerate,
doctors still lack reliable methods for predicting patient response to
standard-of-care therapies for most cancers. DNA methylation has been
implicated in tumor drug response and is a promising source of predictive
biomarkers of drug efficacy, yet the relationship between drug efficacy and
DNA methylation remains largely unexplored. Method: In this analysis, we performed log-rank survival analyses on patients grouped
by cancer and drug exposure to find CpG sites where binary methylation
status is associated with differential survival in patients treated with a
specific drug but not in patients with the same cancer who were not exposed
to that drug. We also clustered these drug-specific CpG sites based on
co-methylation among patients to identify broader methylation patterns that
may be related to drug efficacy, which we investigated for transcription
factor binding site enrichment using gene set enrichment analysis. Results: We identified CpG sites that were drug-specific predictors of survival in 38
cancer-drug patient groups across 15 cancers and 20 drugs. These included 11
CpG sites with similar drug-specific survival effects in multiple cancers.
We also identified 76 clusters of CpG sites with stronger associations with
patient drug response, many of which contained CpG sites in gene promoters
containing transcription factor binding sites. Conclusion: These findings are promising biomarkers of drug response for a variety of
drugs and contribute to our understanding of drug-methylation interactions
in cancer. Investigation and validation of these results could lead to the
development of targeted co-therapies aimed at manipulating methylation in
order to improve efficacy of commonly used therapies and could improve
patient survival and quality of life by furthering the effort toward drug
response prediction.
Collapse
Affiliation(s)
- Bridget Neary
- School of Biological Sciences, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Shuting Lin
- School of Biological Sciences, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering,
Georgia Institute of Technology and Emory University, Atlanta, GA, USA,Peng Qiu, Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic
Dr. NW, Atlanta, GA 30332 USA.
| |
Collapse
|
9
|
Harsanyi S, Novakova ZV, Bevizova K, Danisovic L, Ziaran S. Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs. Int J Mol Sci 2022; 23:13206. [PMID: 36361996 PMCID: PMC9653602 DOI: 10.3390/ijms232113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer (BC) is the 10th most frequent cancer in the world. The initial diagnosis and surveillance of BC require a combination of invasive and non-invasive methods, which are costly and suffer from several limitations. Cystoscopy with urine cytology and histological examination presents the standard diagnostic approach. Various biomarkers (e.g., proteins, genes, and RNAs) have been extensively studied in relation to BC. However, the new trend of liquid biopsy slowly proves to be almost equally effective. Cell-free DNA, non-coding RNA, and other subcellular structures are now being tested for the best predictive and diagnostic value. In this review, we focused on published gene mutations, especially in DNA fragments, but also epigenetic modifications, and non-coding RNA (ncRNA) molecules acquired by liquid biopsy. We performed an online search in PubMed/Medline, Scopus, and Web of Science databases using the terms "bladder cancer", in combination with "markers" or "biomarkers" published until August 2022. If applicable, we set the sensitivity and specificity threshold to 80%. In the era of precision medicine, the development of complex laboratory techniques fuels the search and development of more sensitive and specific biomarkers for diagnosis, follow-up, and screening of BC. Future efforts will be focused on the validation of their sensitivity, specificity, predictive value, and their utility in everyday clinical practice.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Zuzana Varchulova Novakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Katarina Bevizova
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
10
|
Wang S, Xu D, Gao B, Yan S, Sun Y, Tang X, Jiao Y, Huang S, Zhang S. Heterogeneity Analysis of Bladder Cancer Based on DNA Methylation Molecular Profiling. Front Oncol 2022; 12:915542. [PMID: 35747826 PMCID: PMC9209659 DOI: 10.3389/fonc.2022.915542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is a highly complex and heterogeneous malignancy. Tumor heterogeneity is a barrier to effective diagnosis and treatment of bladder cancer. Human carcinogenesis is closely related to abnormal gene expression, and DNA methylation is an important regulatory factor of gene expression. Therefore, it is of great significance for bladder cancer research to characterize tumor heterogeneity by integrating genetic and epigenetic characteristics. This study explored specific molecular subtypes based on DNA methylation status and identified subtype-specific characteristics using patient samples from the TCGA database with DNA methylation and gene expression were measured simultaneously. The results were validated using an independent cohort from GEO database. Four DNA methylation molecular subtypes of bladder cancer were obtained with different prognostic states. In addition, subtype-specific DNA methylation markers were identified using an information entropy-based algorithm to represent the unique molecular characteristics of the subtype and verified in the test set. The results of this study can provide an important reference for clinicians to make treatment decisions.
Collapse
Affiliation(s)
- Shuyu Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuhan Yan
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yiwei Sun
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Xinxing Tang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjia Jiao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shumei Zhang, ; Shan Huang,
| | - Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Shumei Zhang, ; Shan Huang,
| |
Collapse
|