1
|
Kaltsas A, Zikopoulos A, Dimitriadis F, Sheshi D, Politis M, Moustakli E, Symeonidis EN, Chrisofos M, Sofikitis N, Zachariou A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr Issues Mol Biol 2024; 46:8807-8834. [PMID: 39194738 DOI: 10.3390/cimb46080521] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting men's sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption, psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review underscores the need for further research to develop effective treatments, emphasizing the interplay between OS and vascular health in ED. Integrating pharmacological and non-pharmacological strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED treatment protocols to improve patient quality of life.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danja Sheshi
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Magdalena Politis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos N Symeonidis
- Department of Urology II, European Interbalkan Medical Center, 55535 Thessaloniki, Greece
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Hashimoto D, Fujimoto K, Nakata M, Suzuki T, Kumegawa S, Ueda Y, Suzuki K, Asamura S, Yamada G. Developmental and functional roles of androgen and interactive signals for external genitalia and erectile tissues. Reprod Med Biol 2024; 23:e12611. [PMID: 39372370 PMCID: PMC11456227 DOI: 10.1002/rmb2.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Background Recent progress in molecular and signal analyses revealed essential functions of cellular signals including androgen and related growth factors such as Wnt regulators for external genitalia (ExG) development and its pathogenesis. Accumulated data showed their fundamental functions also for erectile tissue (corporal body) development and its abnormalities. The current review focuses on such signals from developmental and functional viewpoints. Methods Experimental strategies including histological and molecular signal analyses with conditional mutant mice for androgen and Wnt signals have been extensively utilized. Main findings Essential roles of androgen for the development of male-type ExG and urethral formation are shown. Wnt signals are associated with androgen for male-type ExG organogenesis. Androgen plays essential roles in the development of erectile tissue, the corporal body and it also regulates the duration time of erection. Wnt and other signals are essential for the regulation of mesenchymal cells of erectile tissue as shown by its conditional mutant mouse analyses. Stress signals, continuous erection, and the potential of lymphatic characteristics of the erectile vessels with sinusoids are also shown. Conclusion Reiterated involvement of androgen, Wnt, and other regulatory factors is stated for the development and pathogenesis of ExG and erectile tissues.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of UrologyUrological Science Institute, Yonsei University College of MedicineSeoulSouth Korea
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuya Suzuki
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Yuko Ueda
- Department of UrologyOsaka Women's and Children's HospitalOsakaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
3
|
Fujimoto K, Hashimoto D, Kim SW, Lee YS, Suzuki T, Nakata M, Kumegawa S, Asamura S, Yamada G. Novel erectile analyses revealed augmentable penile Lyve-1, the lymphatic marker, expression. Reprod Med Biol 2024; 23:e12570. [PMID: 38566911 PMCID: PMC10985380 DOI: 10.1002/rmb2.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose The pathophysiology of penis extends to erectile dysfunction (ED) to conditions including sexually transmitted diseases (STDs) and cancer. To date, there has been little research evaluating vascular drainage from the penis. We aimed to evaluate penile blood flow in vivo and analyze its possible relationship with the lymphatic maker. Materials and Methods We established an in vivo system designed to assess the dynamic blood outflow from the corpus cavernosum (CC) by dye injection. To analyze lymphatic characteristics in the CC, the expression of Lyve-1, the key lymphatic endothelium marker, was examined by the in vitro system and lipopolysaccharide (LPS) injection to mimic the inflammatory conditions. Results A novel cavernography methods enable high-resolution morphological and functional blood drainage analysis. The expression of Lyve-1 was detected along the sinusoids. Furthermore, its prominent expression was also observed after penile LPS injection and in the erectile condition. Conclusions The current in vivo system will potentially contribute to the assessment of penile pathology from a novel viewpoint. In addition, current analyses revealed inducible Lyve-1 expression for LPS injection and the erection state, which requires further analyses on penile lymphatic system.
Collapse
Affiliation(s)
- Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulKorea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulKorea
| | - Takuya Suzuki
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
4
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
5
|
Kataoka T, Hotta Y, Kimura K. A review of experimental techniques for erectile function researches and development of medical technology using animal erectile dysfunction models in sexual and reproductive medicine. Reprod Med Biol 2023; 22:e12513. [PMID: 37020643 PMCID: PMC10069627 DOI: 10.1002/rmb2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Background Erectile dysfunction (ED) is one of the causes of male infertility and is a disease that requires treatment. The first-line drugs for ED are phosphodiesterase 5 (PDE-5) inhibitors, and further treatment options are currently limited. Medical technologies, such as genetic control and regenerative medicine, are developing rapidly. Research on erectile function is progressing rapidly, coupled with technological innovations in other areas. Methods A PubMed search using the keywords "animal (rat, mouse, rabbit, dog, and monkey)" and "erectile" was conducted, and all relevant peer-reviewed English results were evaluated. Main findings The methods for evaluating erectile function include intracavernous pressure (ICP) measurements, isometric tension studies, and dynamic infusion cavernosometry. Papers also reported various disease model animals for the study of diabetes mellitus, cavernous nerve injury, and drug-induced ED. Conclusion Basic research on ED treatment has progressed rapidly over the past 20 years. In particular, research on the mechanism of ED has been accelerated by the publication of a study on the evaluation of erectile function using ICP measurements in rats. In addition, molecular biological experimental methods such as polymerase chain reaction (PCR) and western blotting have become relatively easy to perform due to technological progress, thus advancing research development.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesChiba Institute of Science15‐8 Shiomi‐choChoshiChiba288‐0025Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical SciencesNagoya City University3‐1 Tanabe‐dori, Mizuho‐kuNagoya467‐8603Japan
- Department of Clinical Pharmaceutics, Graduate School of Medical SciencesNagoya City University1‐Kawasumi, Mizuho‐cho, Mizuho‐kuNagoya467‐8601Japan
| |
Collapse
|