1
|
Yagi H, Takagi K, Kato K. Exploring domain architectures of human glycosyltransferases: Highlighting the functional diversity of non-catalytic add-on domains. Biochim Biophys Acta Gen Subj 2024; 1868:130687. [PMID: 39097174 DOI: 10.1016/j.bbagen.2024.130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Human glycosyltransferases (GTs) play crucial roles in glycan biosynthesis, exhibiting diverse domain architectures. This study explores the functional diversity of "add-on" domains within human GTs, using data from the AlphaFold Protein Structure Database. Among 215 annotated human GTs, 74 contain one or more add-on domains in addition to their catalytic domain. These domains include lectin folds, fibronectin type III, and thioredoxin-like domains and contribute to substrate specificity, oligomerization, and consequent enzymatic activity. Notably, certain GTs possess dual enzymatic functions due to catalytic add-on domains. The analysis highlights the importance of add-on domains in enzyme functionality and disease implications, such as congenital disorders of glycosylation. This comprehensive overview enhances our understanding of GT domain organization, providing insights into glycosylation mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan
| | - Katsuki Takagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Japan.
| |
Collapse
|
2
|
Chen S, Pei CX, Xu S, Li H, Liu YS, Wang Y, Jin C, Dean N, Gao XD. Rft1 catalyzes lipid-linked oligosaccharide translocation across the ER membrane. Nat Commun 2024; 15:5157. [PMID: 38886340 PMCID: PMC11182771 DOI: 10.1038/s41467-024-48999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Cai-Xia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yicheng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Shah R, Eklund EA, Radenkovic S, Sadek M, Shammas I, Verberkmoes S, Ng BG, Freeze HH, Edmondson AC, He M, Kozicz T, Altassan R, Morava E. ALG13-Congenital Disorder of Glycosylation (ALG13-CDG): Updated clinical and molecular review and clinical management guidelines. Mol Genet Metab 2024; 142:108472. [PMID: 38703411 PMCID: PMC11402470 DOI: 10.1016/j.ymgme.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.
Collapse
Affiliation(s)
- Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Erik A Eklund
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Mustafa Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ibrahim Shammas
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanne Verberkmoes
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; University of Pécs, Medical School, Pécs, Hungary
| | - Ruqaiah Altassan
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Medical Genomics, Centre for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; University of Pécs, Medical School, Pécs, Hungary.
| |
Collapse
|
4
|
Gu X, Kovacs AS, Myung Y, Ascher DB. Mutations in Glycosyltransferases and Glycosidases: Implications for Associated Diseases. Biomolecules 2024; 14:497. [PMID: 38672513 PMCID: PMC11048727 DOI: 10.3390/biom14040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein stability and solubility. Mutations in these enzymes have been implicated in a spectrum of diseases, prompting critical research into the structural and functional consequences of such genetic variations. This study compiles an extensive dataset from ClinVar and UniProt, providing a nuanced analysis of 2603 variants within 343 GT and GH genes. We conduct thorough MTR score analyses for the proteins with the most documented variants using MTR3D-AF2 via AlphaFold2 (AlphaFold v2.2.4) predicted protein structure, with the analyses indicating that pathogenic mutations frequently correlate with Beta Bridge secondary structures. Further, the calculation of the solvent accessibility score and variant visualisation show that pathogenic mutations exhibit reduced solvent accessibility, suggesting the mutated residues are likely buried and their localisation is within protein cores. We also find that pathogenic variants are often found proximal to active and binding sites, which may interfere with substrate interactions. We also incorporate computational predictions to assess the impact of these mutations on protein function, utilising tools such as mCSM to predict the destabilisation effect of variants. By identifying these critical regions that are prone to disease-associated mutations, our study opens avenues for designing small molecules or biologics that can modulate enzyme function or compensate for the loss of stability due to these mutations.
Collapse
Affiliation(s)
- Xiaotong Gu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Aaron S. Kovacs
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Yoochan Myung
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|