1
|
Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, Liu J, Zhuo Y, Tang J, He J, Miao L. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology 2025; 14:2460281. [PMID: 39902867 PMCID: PMC11796542 DOI: 10.1080/2162402x.2025.2460281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The exploration of therapeutic targets in neuroblastoma (NB), which needs more attempts, can benefit patients with high-risk NB. Based on metabolomic and transcriptomic data in mediastinal NB tissues, we found that the content of long-chain acylcarnitine (LCAC) was increased and positively associated with leptin expression in advanced NB. Leptin over-expression forced naïve CD4+ T cells to differentiate into Treg cells instead of Th17 cells, which benefited from NB cell proliferation, migration, and drug resistance. Mechanically, leptin in NB cells blunted the activity of carnitine palmitoyltransferase 2 (CPT2), the key enzyme for LCAC catabolism, by inhibiting sirtuin 3-mediated CPT2 deacetylation, which depresses oxidative phosphorylation (OXPHOS) for energy supply and increases lactic acid (LA) production from glycolysis to modulate CD4+ T cell differentiation. These findings highlight that excess leptin contributes to lipid metabolism dysfunction in NB cells and subsequently misdirects CD4+ T cell differentiation in tumor micro-environment (TME), indicating that targeting leptin could be a therapeutic strategy for retarding NB progression.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
3
|
Li Y, Song L, Yan X, Chi Y, Hu Y, Wang J, Robeldo D, Mukiibi R, Chen S. Orchestrated immune responses to Mycobacterium marinum natural infection in tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110145. [PMID: 39837399 DOI: 10.1016/j.fsi.2025.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Mycobacterium marinum is a major pathogen in aquaculture, posing a substantial threat to the health and sustainability of tongue sole (Cynoglossus semilaevis) farming. This study investigated the genetic basis of immune response in tongue sole by comparing transcriptome profiles of liver and spleen tissues from symptomatic (susceptible) and healthy (resistant) individuals during a natural M. marinum outbreak. Transcriptomic analyses identified differentially expressed genes and enriched pathways related to immune responses. Key genes, including atp6ap1, gpi, and idh3a, were found to be crucial in immune response to M. marinum infection, involved in immune processes such as signal transduction, antigen processing, and metabolic pathways. Protein-protein interaction networks highlighted central hub genes such as nedd8, jun and junb, which play pivotal roles in immune regulation. These findings provide insights into the orchestrated immune responses to mycobacteriosis, which can inform selective breeding strategies for disease-resistant tongue sole strains. This is the first comprehensive transcriptome analysis of M. marinum natural infection in tongue sole, offering valuable data for future research and disease management in aquaculture.
Collapse
Affiliation(s)
- Yangzhen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Limin Song
- Tianjin Fisheries Research Institute, Tianjin, 300221, China
| | - Xu Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yong Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yuanri Hu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Diego Robeldo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom.
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma HK. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:7. [PMID: 40051496 PMCID: PMC11883236 DOI: 10.20517/cdr.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton AB T6G 1Z2, Canada
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India
| | | | | | - Tuneer Khelkar
- Department of Botany and Biotechnology, Govt. Kaktiya P G College, Jagdalpur 494001, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| |
Collapse
|
5
|
Qin R, Fan X, Huang Y, Chen S, Ding R, Yao Y, Wu R, Duan Y, Li X, Khan HU, Hu J, Wang H. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance. Transl Oncol 2024; 50:102156. [PMID: 39405607 PMCID: PMC11736406 DOI: 10.1016/j.tranon.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Colorectal cancer (CRC), with the incidence and mortality rising on a yearly basis, greatly threatens people's health. It is considered an important hallmark of tumorigenesis that aberrant glucose metabolism in cancer cells, particularly the Warburg effect. In CRC, the Warburg effect predominantly influences cancer development and progression via its involvement in the glycolytic pathway regarding cell metabolism. The critical mechanisms underlying this process include key glycolytic enzymes, transport proteins, regulatory molecules, and signaling pathways. Furthermore, targeting the reprogrammed glucose metabolism in cancer cells can be potentially used for CRC treatment. However, the mechanisms driving CRC onset and progression, especially in relation to glucose metabolism reprogramming, are not fully understood and represent an emerging field of research. The review aims at providing new insights into the role that glucose metabolism reprogramming plays in the progression of CRC progression together with its resistance to treatment. Ultimately, these insights strive to diminish the risks of CRC metastasis and recurrence.
Collapse
Affiliation(s)
- Rong Qin
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xirui Fan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yun Huang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Sijing Chen
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Rui Ding
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Ying Yao
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Rui Wu
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yiyao Duan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xiang Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hameed Ullah Khan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Jun Hu
- The First People's Hospital of Kunming, Yunnan 650034, China.
| | - Hui Wang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China.
| |
Collapse
|
6
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
7
|
Li Y, Hou B, Xu Y, Li H, Zhu Y, Kong C. Comprehensive multi-omics analysis reveals a combination of lncRNAs that synergistically regulate glycolysis and immunotherapeutic effects in renal clear cell carcinoma. Aging (Albany NY) 2024; 16:11955-11969. [PMID: 39167430 PMCID: PMC11386928 DOI: 10.18632/aging.206069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Clear cell renal carcinoma is a common urological malignancy with poor prognosis and treatment outcomes. lncRNAs are important in metabolic reprogramming and the tumor immune microenvironment, but their role in clear cell renal carcinoma is unclear. METHODS Renal clear cell carcinoma sample data from The Cancer Genome Atlas was used to establish a new risk profile by glycolysis-associated lncRNAs via machine learning. Risk profile-associated column-line plots were constructed to provide a quantitative tool for clinical practice. Patients with renal clear cell carcinoma were divided into high- and low-risk groups. Clinical features, tumor immune microenvironments, and immunotherapy responses were systematically analyzed. We experimentally confirmed the role of LINC01138 and LINC01605 in renal clear cell carcinoma. RESULTS The risk profile, consisting of LUCAT1, LINC01138, LINC01605, and HOTAIR, reliably predicted survival in patients with renal clear cell carcinoma and was validated in multiple external datasets. The high-risk group presented higher levels of immune cell infiltration and better immunotherapy responses than the low-risk group. LINC01138 and LINC01605 knockdown inhibited the proliferation of renal clear cell carcinoma. CONCLUSIONS The identified risk profiles can accurately assess the prognosis of patients with clear cell renal carcinoma and identify patient populations that would benefit from immunotherapy, providing valuable insights and therapeutic targets for the clinical management of clear cell renal carcinoma.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Bowen Hou
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Hongze Li
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
8
|
Li J, Su P, Li T, Hao Y, Wang T, Fu L, Liu X. The Role and Clinical Relevance of Glycolysis-Associated Genes on Immune Infiltration in Hepatocellular Carcinoma. J Cell Biochem 2024; 125:e30620. [PMID: 38923014 DOI: 10.1002/jcb.30620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Hepatocellular carcinoma (HCC) poses a significant challenge with dismal survival rates, necessitating a deeper understanding of its molecular mechanisms and the development of improved therapies. Metabolic reprogramming, particularly heightened glycolysis, plays a crucial role in HCC progression. Glycolysis-associated genes (GAGs) emerge as key players in HCC pathogenesis, influencing the tumor microenvironment and immune responses. This study aims to investigate the intricate interplay between GAGs and the immune landscape within HCC, offering valuable insights into potential prognostic markers and therapeutic targets to enhance treatment strategies and patient outcomes. Through the exploration of GAGs, we have identified two distinct molecular glycolytic subtypes in HCC patients, each exhibiting significant differences in both the immune microenvironment and prognosis. A risk model comprising five key GAGs was formulated and subsequently evaluated for their predictive accuracy. Our findings underscore the diverse tumor microenvironment and immune responses associated with the varying glycolytic subtypes observed in HCC. The identified key GAGs hold promise as prognostic indicators for evaluating HCC risk levels, predicting patient outcomes, and guiding clinical treatment decisions, particularly in the context of anticipating responses to immunotherapy drugs.
Collapse
Affiliation(s)
- Jing Li
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Peng Su
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Ting Li
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yang Hao
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tianjun Wang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lei Fu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xin Liu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
9
|
Wei Z, Guo X, Li D, Wang J, Lin C, Tan C, Wang Y, Zhu X, Tan S. Prognostic value of CMTM6 protein in hepatocellular carcinoma involving the regulation of the immune microenvironment. Int J Biol Macromol 2024; 275:133618. [PMID: 38971275 DOI: 10.1016/j.ijbiomac.2024.133618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
There have been notable irregularities in CMTM6 expression observed in hepatocellular carcinoma (HCC), with an evident correlation between CMTM6 dysregulation and patient prognosis. The cell cycle progression came to a halt at the G2/M phase. In-depth RNA-sequencing analysis of CMTM6 knockdown Hep3B cells revealed that the most prominent effect of CMTM6 perturbation was on the expression of CXCL8, a chemokine involved in immune responses, particularly through the interleukin-17F (IL-17F) signaling pathway. By carefully examining the RNA-sequencing data obtained from CMTM6 knockdown Hep3B cells and cross-referencing it with the TCGA-LIHC database, we were able to discern that CMTM6 and programmed death-ligand 1 (PD-L1) collaboratively partake in immune regulation within T cells. Furthermore, CMTM6 exerted an influential role in modulating the infiltration of CD4+ and CD8+ T cells in the HCC microenvironment, thereby impacting the overall immune response. Our investigation found that HCC cases characterized by an elevated co-expression of CMTM6 and PD-L1, along with augmented CD4+ T cell infiltration, demonstrated comparatively longer overall and progression-free survival rates when contrasted with those displaying lower CD4+ T cell infiltration.
Collapse
Affiliation(s)
- Zhongheng Wei
- Youjiang Medical University for Nationalities Affiliated Hospital, Baise, Guangxi 533000, China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Jianchu Wang
- Youjiang Medical University for Nationalities Affiliated Hospital, Baise, Guangxi 533000, China
| | - Cheng Lin
- Youjiang Medical University for Nationalities Affiliated Hospital, Baise, Guangxi 533000, China
| | - Chao Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yue Wang
- Youjiang Medical University for Nationalities Affiliated Hospital, Baise, Guangxi 533000, China; Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435, USA
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Shengkui Tan
- Youjiang Medical University for Nationalities Affiliated Hospital, Baise, Guangxi 533000, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
10
|
Xi Y, Liu R, Zhang X, Guo Q, Zhang X, Yang Z, Zheng H, Song Q, Hua B. A Bibliometric Analysis of Metabolic Reprogramming in the Tumor Microenvironment From 2003 to 2022. Cancer Rep (Hoboken) 2024; 7:e2146. [PMID: 39158178 PMCID: PMC11331499 DOI: 10.1002/cnr2.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Despite considerable progress in cancer immunotherapy, it is not available for many patients. Resistance to immune checkpoint blockers arises from the intricate interactions between cancer and its microenvironment. Metabolic reprogramming in tumor and immune cells in the tumor microenvironment (TME) influences anti-tumor immune responses by remodeling the immune microenvironment. Metabolic reprogramming has emerged as an important hallmark of tumorigenesis. However, few studies have focused on the TME and metabolic reprogramming. Therefore, we aimed to explore the current research status and popular topics in TME-related metabolic reprogramming over a 20 years using a bibliometric approach. METHODS Studies focusing on metabolic reprogramming and TME were searched using the Web of Science Core Collection database. Bibliometric and visual analyses of the articles and reviews were performed using Bibliometrix, VOSviewer, and CiteSpace. RESULTS In total, 4726 articles published between 2003 and 2022 were selected. The number of publications and citations has increased annually. Cooperation network analysis indicated that the United States holds the foremost position in metabolic reprogramming and TME research with the highest volume of publications and citations, thus exerting the greatest influence. Among these institutions, Fudan University displayed the highest level of productivity. Frontiers in Immunology showed the highest degree of productivity in this field. Ho Ping-Chih made the most article contributions, and Pearce Edward J. was the most co-cited author. Four clusters were obtained after a cluster analysis of the authors' keywords: TME, metabolic reprogramming, immunometabolism, and immunity. Immunometabolism, glycolysis, immune cells, and tumor-associated macrophages are relatively recent keywords that have attracted increasing attention. CONCLUSIONS A comprehensive landscape of advancements in metabolic reprogramming and the TME was evaluated, which provided crucial information for scholars to further advance this promising field. Further research should explore new topics related to immunometabolism in the TME using a transdisciplinary approach.
Collapse
Affiliation(s)
- Yupeng Xi
- Department of General Internal Medicine, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Rui Liu
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xing Zhang
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Qiujun Guo
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xiwen Zhang
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zizhen Yang
- Department of General Internal MedicineXi'an Fifth HospitalXi'anShanxiChina
| | - Honggang Zheng
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Baojin Hua
- Department of Oncology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
11
|
Syrnioti A, Petousis S, Newman LA, Margioula-Siarkou C, Papamitsou T, Dinas K, Koletsa T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel) 2024; 16:2094. [PMID: 38893213 PMCID: PMC11171372 DOI: 10.3390/cancers16112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Lisa A. Newman
- Department of Breast Surgery, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Chrysoula Margioula-Siarkou
- MSc Program in Gynaecologic Oncology and Breast Oncology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
12
|
Yu T, Liu Z, Tao Q, Xu X, Li X, Li Y, Chen M, Liu R, Chen D, Wu M, Yu J. Targeting tumor-intrinsic SLC16A3 to enhance anti-PD-1 efficacy via tumor immune microenvironment reprogramming. Cancer Lett 2024; 589:216824. [PMID: 38522774 DOI: 10.1016/j.canlet.2024.216824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Immunotherapy, especially immune checkpoint inhibitors, has revolutionized clinical practice within the last decade. However, primary and secondary resistance to immunotherapy is common in patients with diverse types of cancer. It is well-acknowledged that tumor cells can facilitate the formation of immunosuppressive microenvironments via metabolism reprogramming, and lactic acid, the metabolite of glycolysis, is a significant contributor. SLC16A3 (also named as MCT4) is a transporter mediating lactic acid efflux. In this study, we investigated the role of glycolysis in immunotherapy resistance and aimed to improve the immunotherapy effects via Slc16a3 inhibition. Bioinformatical analysis revealed that the expression of glycolysis-related genes correlated with less CD8+ T cell infiltration and increased myeloid-derived suppressor cells (MDSC) enrichment. We found that high glycolytic activity in tumor cells adversely affected the antitumor immune responses and efficacy of immunotherapy and radiotherapy. As the transporter of lactic acid, SLC16A3 is highly expressed in glycolytic B16-F10 (RRID: CVCL_0159) cells, as well as human non-small cell lung carcinoma. We validated that Slc16a3 expression in tumor cells negatively correlated with anti-PD-1 efficiency. Overexpression of Slc16a3 in tumor cells promoted lactic acid production and efflux, and reduced tumor response to anti-PD-1 inhibitors by inhibiting CD8+ T cell function. Genetic and pharmacological inhibition of Slc16a3 dramatically reduced the glycolytic activity and lactic acid production in tumor cells, and ameliorated the immunosuppressive tumor microenvironments (TMEs), leading to boosted antitumor effects via anti-PD-1 blockade. Our study therefore demonstrates that tumor cell-intrinsic SLC16A3 may be a potential target to reverse tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Zhaoyun Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Qingxu Tao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Xin Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Xinyang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, PR China
| | - Yang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Minxin Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Rufei Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
13
|
Somova M, Simm S, Padmyastuti A, Ehrhardt J, Schoon J, Wolff I, Burchardt M, Roennau C, Pinto PC. Integrating tumor and healthy epithelium in a micro-physiology multi-compartment approach to study renal cell carcinoma pathophysiology. Sci Rep 2024; 14:9357. [PMID: 38653823 PMCID: PMC11039668 DOI: 10.1038/s41598-024-60164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue. Based on the TissUse Humimic platform our model combines healthy renal proximal tubule epithelial cells (RPTEC) and RCC. Co-culturing reconstructed RPTEC tubules with RCC spheroids in a closed micro-perfused circuit resulted in significant phenotypical changes to the tubules. Expression of immune factors revealed that interleukin-8 (IL-8) and tumor necrosis factor-alfa (TNF-α) were upregulated in the non-malignant cells while neutrophil gelatinase-associated lipocalin (NGAL) was downregulated in both RCC and RPTEC. Metabolic analysis showed that RCC prompted a shift in the energy production of RPTEC tubules, inducing glycolysis, in a metabolic adaptation that likely supports RCC growth and immunogenicity. In contrast, RCC maintained stable metabolic activity, emphasizing their resilience to external factors. RNA-seq and biological process analysis of primary RTPTEC tubules demonstrated that the 3D tubular architecture and MPS conditions reverted cells to a predominant oxidative phosphorylate state, a departure from the glycolytic metabolism observed in 2D culture. This dynamic RCC co-culture model, approximates the physiology of healthy renal tubules to that of RCC, providing new insights into tumor-host interactions. Our approach can show that an RCC-MPS can expand the complexity and scope of pathophysiology and biomarker studies in kidney cancer research.
Collapse
Affiliation(s)
- Maryna Somova
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450, Coburg, Germany
| | - Adventina Padmyastuti
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Fleichmannstraße 8, 17475, Greifswald, Germany
| | - Ingmar Wolff
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Cindy Roennau
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Pedro Caetano Pinto
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475, Greifswald, Germany.
| |
Collapse
|
14
|
Shukla M, Bhowmick R, Ganguli P, Sarkar RR. Metabolic reprogramming and signalling cross-talks in tumour-immune interaction: a system-level exploration. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231574. [PMID: 38481985 PMCID: PMC10933535 DOI: 10.1098/rsos.231574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024]
Abstract
Tumour-immune microenvironment (TIME) is pivotal in tumour progression and immunoediting. Within TIME, immune cells undergo metabolic adjustments impacting nutrient supply and the anti-tumour immune response. Metabolic reprogramming emerges as a promising approach to revert the immune response towards a pro-inflammatory state and conquer tumour dominance. This study proposes immunomodulatory mechanisms based on metabolic reprogramming and employs the regulatory flux balance analysis modelling approach, which integrates signalling, metabolism and regulatory processes. For the first time, a comprehensive system-level model is constructed to capture signalling and metabolic cross-talks during tumour-immune interaction and regulatory constraints are incorporated by considering the time lag between them. The model analysis identifies novel features to enhance the immune response while suppressing tumour activity. Particularly, altering the exchange of succinate and oxaloacetate between glioma and macrophage enhances the pro-inflammatory response of immune cells. Inhibition of glutamate uptake in T-cells disrupts the antioxidant mechanism of glioma and reprograms metabolism. Metabolic reprogramming through adenosine monophosphate (AMP)-activated protein kinase (AMPK), coupled with glutamate uptake inhibition, was identified as the most impactful combination to restore T-cell function. A comprehensive understanding of metabolism and gene regulation represents a favourable approach to promote immune cell recovery from tumour dominance.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
15
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
16
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
17
|
Zheng D, Long S, Xi M. A comprehensive pan-cancer analysis identifies a novel glycolysis score and its hub genes as prognostic and immunological biomarkers. Transl Cancer Res 2023; 12:2852-2874. [PMID: 37969385 PMCID: PMC10643978 DOI: 10.21037/tcr-23-325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 11/17/2023]
Abstract
Background Glycolysis plays significant roles in tumor progression and immune response. However, the exact role of glycolysis in prognosis and immune regulation has not been explored in all cancer types. This study first calculated a novel glycolysis score and screened out 12 glycolytic hub genes, and comprehensively analyzed molecular expression, clinical implications, and immune features of glycolysis among pan-cancer. Methods The glycolysis score was derived by the single sample gene set enrichment analysis (ssGSEA) algorithm. The correlations of glycolysis with clinical parameters were analyzed using "limma" package. Downstream pathways of glycolysis were identified by Gene Set Enrichment Analysis (GSEA). The immune cell infiltration was explored and validated by three databases. The association between glycolysis and some immunotherapy biomarkers was explored by Pearson correlation analysis. Single-nucleotide variation (SNV), copy number variation (CNV), DNA methylation, and drug sensitivity analyses of 12 glycolytic hub genes were investigated. IMvigor210 and GSE91061 immunotherapeutic cohorts were retrieved to assess the ability of glycolysis score to predict immunotherapy efficacy. The expression of glycolysis key genes was detected in normal and endometrial cancer cell lines. Results We found that glycolysis score was generally higher in tumor tissues compared to normal tissues and a high glycolysis score predominated as a risk prognostic factor. A high glycolysis score was associated with decreased immunostimulatory natural killer (NK) cells and CD8+ T cells infiltration, well increased immunosuppressive M2-tumor-associated macrophages (M2-TAM) cells infiltration. Tumor mutational burden (TMB), microsatellite instability (MSI), and immune checkpoints (ICPs) all closely interacted with glycolysis score and the frequency of gene mutation was confirmed to be higher in colon adenocarcinoma (COAD) patients with higher glycolysis score. The SNV, CNV, and DNA methylation of 12 glycolysis key genes occurred at different frequencies and showed different impacts on survival outcomes. The predictive and prognostic value of glycolysis score for immunotherapy outcomes was validated in two immunotherapy cohorts. The expression levels of key genes differ in normal endometrial and three endometrial cancer cell lines. Conclusions This work indicated that glycolysis score and 12 glycolytic hub genes were correlated with an immunosuppressive microenvironment. They could be served as promising biomarkers aiding diagnosis, predicting prognosis and immunotherapy response for some tumor patients.
Collapse
Affiliation(s)
- Danxi Zheng
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Siyu Long
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Zhang W, Lang R. Macrophage metabolism in nonalcoholic fatty liver disease. Front Immunol 2023; 14:1257596. [PMID: 37868954 PMCID: PMC10586316 DOI: 10.3389/fimmu.2023.1257596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often progressive subtype nonalcoholic steatohepatitis (NASH), have emerged as significant contributors to hepatic morbidity worldwide. The pathophysiology of NAFLD/NASH is multifaceted, variable, and remains incompletely understood. The pivotal role of liver-resident and recruited macrophages in the pathogenesis of NAFLD and NASH is widely acknowledged as a crucial factor in innate immunity. The remarkable plasticity of macrophages enables them to assume diverse activation and polarization states, dictated by their immunometabolism microenvironment and functional requirements. Recent studies in the field of immunometabolism have elucidated that alterations in the metabolic profile of macrophages can profoundly influence their activation state and functionality, thereby influencing various pathological processes. This review primarily focuses on elucidating the polarization and activation states of macrophages, highlighting the correlation between their metabolic characteristics and the transition from pro-inflammatory to anti-inflammatory phenotypes. Additionally, we explore the potential of targeting macrophage metabolism as a promising therapeutic approach for the management of NAFLD/NASH.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Cadenas-De Miguel S, Lucianer G, Elia I. The metabolic cross-talk between cancer and T cells. Trends Biochem Sci 2023; 48:597-609. [PMID: 37080875 DOI: 10.1016/j.tibs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
The metabolic cross-talk between cancer cells and T cells dictates cancer formation and progression. These cells possess metabolic plasticity. Thus, they adapt their metabolic profile to meet their phenotypic requirements. However, the nutrient microenvironment of a tumor is a very hostile niche in which these cells are forced to compete for the available nutrients. The hyperactive metabolism of tumor cells often outcompetes the antitumorigenic CD8+ T cells while promoting the protumorigenic exhausted CD8+ T cells and T regulatory (Treg) cells. Thus, cancer cells elude the immune response and spread in an uncontrolled manner. Identifying the metabolic pathways necessary to shift the balance from a protumorigenic to an antitumorigenic immune phenotype is essential to potentiate antitumor immunity.
Collapse
Affiliation(s)
| | - Giulia Lucianer
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ilaria Elia
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
El Hadi C, Hilal G, Aoun R. Enhancing cancer treatment and understanding through clustering of gene responses to categorical stressors. Sci Rep 2023; 13:6517. [PMID: 37085609 PMCID: PMC10121664 DOI: 10.1038/s41598-023-33785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Cancer cells have a unique metabolic activity in the glycolysis pathway compared to normal cells, which allows them to maintain their growth and proliferation. Therefore, inhibition of glycolytic pathways may be a promising therapeutic approach for cancer treatment. In this novel study, we analyzed the genetic responses of cancer cells to stressors, particularly to drugs that target the glycolysis pathway. Gene expression data for experiments on different cancer cell types were extracted from the Gene Expression Omnibus and the expression fold change was then clustered after dimensionality reduction. We identified four groups of responses: the first and third were most affected by anti-glycolytic drugs, especially those acting on multiple pathways at once, and consisted mainly of squamous and mesenchymal tissues, showing higher mitotic inhibition and apoptosis. The second and fourth groups were relatively unaffected by treatment, comprising mainly gynecologic and hormone-sensitive groups, succumbing least to glycolysis inhibitors. Hexokinase-targeted drugs mainly showed this blunted effect on cancer cells. This study highlights the importance of analyzing the molecular states of cancer cells to identify potential targets for personalized cancer therapies and to improve our understanding of the disease.
Collapse
Affiliation(s)
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Rita Aoun
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
21
|
Silva A, Cerqueira MC, Rosa B, Sobral C, Pinto-Ribeiro F, Costa MF, Baltazar F, Afonso J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065141. [PMID: 36982217 PMCID: PMC10049181 DOI: 10.3390/ijms24065141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Energy production by cancer is driven by accelerated glycolysis, independently of oxygen levels, which results in increased lactate production. Lactate is shuttled to and from cancer cells via monocarboxylate transporters (MCTs). MCT1 works both as an importer and an extruder of lactate, being widely studied in recent years and generally associated with a cancer aggressiveness phenotype. The aim of this systematic review was to assess the prognostic value of MCT1 immunoexpression in different malignancies. Study collection was performed by searching nine different databases (PubMed, EMBASE, ScienceDirect, Scopus, Cochrane Library, Web of Science, OVID, TRIP and PsycINFO), using the keywords "cancer", "Monocarboxylate transporter 1", "SLC16A1" and "prognosis". Results showed that MCT1 is an indicator of poor prognosis and decreased survival for cancer patients in sixteen types of malignancies; associations between the transporter's overexpression and larger tumour sizes, higher disease stage/grade and metastasis occurrence were also frequently observed. Yet, MCT1 overexpression correlated with better outcomes in colorectal cancer, pancreatic ductal adenocarcinoma and non-small cell lung cancer patients. These results support the applicability of MCT1 as a biomarker of prognosis, although larger cohorts would be necessary to validate the overall role of MCT1 as an outcome predictor.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Sobral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Zhang L, Wang Y, Song M, Chang A, Zhuo W, Zhu Y. Fibronectin 1 as a Key Gene in the Genesis and Progression of Cadmium-Related Bladder Cancer. Biol Trace Elem Res 2022:10.1007/s12011-022-03510-1. [PMID: 36471209 DOI: 10.1007/s12011-022-03510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Exposure to cadmium (Cd), a non-essential heavy metal, leads to the malignant transformation of urothelial cells and promotes bladder cancer (BC) development, but the mechanisms are unclear. Therefore, we aimed to explore the possible molecules associated with Cd-related BC. By analyzing and mining biological big data in public databases, we screened genes associated with the malignant transformation of uroepithelial cells caused by Cd and further screened the key gene associated with BC prognosis from these genes. The possible roles of the key gene in BC progression were then further explored through biological big data analysis and cellular experiments. Data mining yielded a total of 387 malignant transformation-related genes, which were enriched in multiple cancer-related signaling pathways, such as cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, and Jak-STAT signaling pathway. Further screening identified Fibronectin 1 (FN1) as the key gene. High expression of FN1 was associated with the advanced pathologic stage, T stage, N stage, and M stage and predicted an unfavorable outcome in BC patients. FN1 expression was positively associated with the infiltration of several types of immune cells, particularly tumor-associated macrophages and cancer-associated fibroblasts. Overexpression of FN1 could be detected in Cd-treated urothelial cells and BC cell lines. Interestingly, silencing of FN1 impaired the proliferation and invasive capacity of BC cells. In conclusion, the present study provides new insight into the mechanism of Cd-related BC. FN1 might be a prognostic marker and therapeutic target for BC. Future studies are needed to confirm these results.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Wang
- Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Minghan Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenlei Zhuo
- Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Wang H, Wang B, Jiang J, Wu Y, Song A, Wang X, Yao C, Dai H, Xu J, Zhang Y, Ma Q, Xu F, Li R, Wang C. SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy. Molecules 2022; 27:8552. [PMID: 36500643 PMCID: PMC9738583 DOI: 10.3390/molecules27238552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The acidic tumor microenvironment (TME) is unfriendly to the activity and function of immune cells in the TME. Here, we report inorganic nanozymes (i.e., SnSe NSs) that mimic the catalytic activity of lactate dehydrogenase to degrade lactate to pyruvate, contributing to the metabolic treatment of tumors. As found in this study, SnSe NSs successfully decreased lactate levels in cells and tumors, as well as reduced tumor acidity. This is associated with activation of the immune response of T cells, thus alleviating the immunosuppressive environment of the TME. More importantly, the nanozyme successfully inhibited tumor growth in mutilate mouse tumor models. Thus, SnSe NSs show a promising result in lactate depletion and tumor suppression, which exemplifies its potential strategy in targeting lactate for metabolic therapy.
Collapse
Affiliation(s)
- Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Beilei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Anning Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xiaoyu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|